SEMAINE DU 02/12

1 Cours

Réduction algébrique

Polynômes d'endomorphismes Définition. Algèbre commutative $\mathbb{K}[u]$ pour $u \in \mathcal{L}(E)$ et $\mathbb{K}[A]$ pour $A \in \mathcal{M}_n(\mathbb{K})$. Lemme des noyaux.

Polynômes annulateurs Définition. Idéal annulateur d'une matrice/d'un endomorphisme. Polynôme minimal d'une matrice/d'un endomorphisme. Le polynôme minimal est un invariant de similitude. Polynôme minimal d'un endomorphisme induit. Dimension et base de la sous-algèbre engendrée par un endomorphisme ou une matrice carrée. Théorème de Cayley-Hamilton. Le polynôme minimal divise le polynôme caractéristique.

Application à la réduction Les valeurs propres d'un endomorphisme ou d'une matrice carrée sont des racines d'un polynôme annulateur. Le spectre est l'ensemble des racines du polynôme minimal. Une matrice/un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples si et seulement si il admet un polynôme annulateur scindé à racines simples. Si un endomorphisme est diagonalisable, tout endomorphisme qu'il induit l'est également. Une matrice/un endomorphisme est trigonalisable si et seulement si son polynôme minimal est scindé si et seulement si il admet un polynôme annulateur scindé.

Sous-espaces caractéristiques Sous-espaces caractéristiques d'un endomorphisme ou d'une matrice à polynôme caractéristique scindé. Les sous-espaces caractéristiques d'un endomorphisme d'un espace vectoriel E à polynôme caractéristique scindé sont supplémentaires dans E. Dimension d'un sous-espace caractéristique. Toute matrice à polynôme caractéristique scindé est semblable à une matrice diagonale par blocs dont les blocs diagonaux sont triangulaires et à coefficients diagonaux tous égaux.

Suites de fonctions

Modes de convergence Convergence simple. Convergence uniforme. La convergence uniforme entraîne la convergence simple.

Théorèmes d'interversion

- Théorème de la double limite : si (f_n) converge uniformément vers une fonction f sur un intervalle I, et si pour tout $n \in \mathbb{N}$, f_n admet une limite ℓ_n en $a \in \overline{I}$, alors (ℓ_n) admet une limite, f admet une limite en a et $\lim_{n \to +\infty} \ell_n$.
- Continuité : si (f_n) est une suite de fonctions continues sur un intervalle I convergeant uniformément vers une fonction f sur I, alors f est continue sur I. Il suffit en fait d'avoir la convergence uniforme sur tout segment.
- Primitivisation : $\operatorname{si}(f_n)$ est une suite de fonctions continues convergeant uniformément vers une fonction f sur tout segment d'un intervalle I, alors, pour tout $a \in I$, $\left(x \mapsto \int_a^x f_n(t) \, \mathrm{d}t\right)_{n \in \mathbb{N}}$ converge uniformément vers $x \mapsto \int_a^x f(t) \, \mathrm{d}t$ sur tout segment de I.
- Intégration : si (f_n) est une suite de fonctions continues convergeant uniformément vers une fonction f sur le segment [a,b], alors $\lim_{n\to+\infty}\int_a^b f_n(t) \ \mathrm{d}t = \int_a^b f(t) \ \mathrm{d}t$.
- Dérivation : si (f_n) est une suite de fonctions de classe \mathcal{C}^1 convergeant simplement vers une fonction f sur un intervalle I et si (f'_n) converge uniformément vers une fonction g sur tout segment de I, alors f est de classe \mathcal{C}^1 sur I et f' = g. Adaptation aux fonctions de classe \mathcal{C}^k .

2 Méthodes à maîtriser

- Déterminer des valeurs propres à l'aide d'un polynôme annulateur.
- Caractériser la diagonalisabilité/trigonalisabilité à l'aide d'un polynôme annulateur.
- Automatisme : $P(u) = 0 \iff \pi_u \mid P$.
- Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur.
- Calculer les puissances d'une matrice à l'aide d'un polynôme annulateur (division euclidienne de Xⁿ par un polynôme annulateur P puis considérer les racines de P).
- Déterminer le polynôme minimal d'une matrice : il divise le polynôme caractéristique et il admet pour racines les valeurs propres, ce qui ne laisse qu'un nombre fini de possibilités.
- Montrer qu'une suite de fonctions (f_n) converge simplement : étude de la suite numérique $(f_n(x))$ à x fixé (éventuellement une suite récurrente suivant la définition de la suite de fonctions).
- Montrer qu'une suite de fonctions (f_n) converge uniformément :
 - 1. Montrer que (f_n) converge simplement vers une fonction f.

- 2. Montrer que $\|f_n f\|_{\infty}$ tend vers 0 lorsque n tend vers $+\infty$: pour cela, on peut
 - étudier $f_n f$ pour déterminer explicitement sup $|f_n f|$;
 - majorer $|f_n(x) f(x)|$ par une quantité indépendante de x tendant vers 0 quand n tend vers $+\infty$.
- Pour montrer qu'une suite de fonctions ne converge pas uniformément, on peut au choix :
 - Calculer explicitement $||f_n f||_{\infty}$, où f est la limite simple de (f_n) , et montrer que cette quantité ne tend pas vers 0.
 - Déterminer une suite (x_n) telle que $f_n(x_n) f(x_n)$ ne tend pas vers 0.
 - Mettre en défaut l'un des théorèmes d'«interversion» : par exemple, les f_n sont continues mais f ne l'est pas.

3 Questions de cours

Banque CCP Exos 9, 10, 11, 12