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Applications linéaires

1 Définition et premiers exemples

1.1 Définition

Définition 1.1 Application linéaire

Soient E et F deux 𝕂-espaces vectoriels. On appelle application linéaire de E dans F toute application 𝑓∶ E → F
vérifiant :

(i) ∀(𝑥, 𝑦) ∈ E2, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) i.e. 𝑓 est un morphisme du groupe (E, +) dans le groupe (F, +) ;

(ii) ∀λ ∈ 𝕂, ∀𝑥 ∈ E, 𝑓(λ.𝑥) = λ.𝑓(𝑥).

Cette définition équivaut à la suivante :

∀(λ, μ) ∈ 𝕂2, ∀(𝑥, 𝑦) ∈ E2, 𝑓(λ.𝑥 + μ.𝑦) = λ.𝑓(𝑥) + μ.𝑓(𝑦)

L’ensemble des applications linéaires de E dans F est noté ℒ(E, F).
Une application linéaire de E dans E est appelé un endomorphisme (linéaire) de E. L’ensemble des endomorphismes de
E est noté ℒ(E).
Une application linéaire de E dans 𝕂 est appelé une forme linéaire de E. L’ensemble des formes linéaires de E est noté
E∗.

Remarque.

• On a en particulier 𝑓(0E) = 0F.

• L’application nulle { E ⟶ F
𝑥 ⟼ 0F

est une application linéaire de E dans F.

• L’identité IdE est un endomorphisme de E.

1.2 Exemples
1.2.1 Géométrie

Exemple 1.1

On note E⃗ l’ensemble des vecteurs de l’espace.

• Soit ⃗𝑣 ∈ E⃗. L’application { E⃗ ⟶ E⃗
⃗𝑢 ⟼ ⃗𝑢 ∧ ⃗𝑣

est un endomorphisme de E⃗.

• Soit ⃗𝑣 ∈ E⃗. L’application { E⃗ ⟶ ℝ
⃗𝑢 ⟼ ⃗𝑢. ⃗𝑣

est une forme linéaire de E⃗.

• Soit ⃗𝑣, 𝑤⃗. L’application { E⃗ ⟶ ℝ
⃗𝑢 ⟼ Det( ⃗𝑢, ⃗𝑣, 𝑤⃗)

est une forme linéaire de E⃗.
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1.2.2 Suites

Exemple 1.2

• L’application { ℂℕ ⟶ ℂℕ

(𝑢𝑛) ⟼ (𝑢𝑛+1)
est un endomorphisme de ℂℕ.

• Notons E le ℝ-espace vectoriel des suites convergentes. L’application qui à (𝑢𝑛) ∈ E associe lim
𝑛→+∞

𝑢𝑛 est une
forme linéaire sur E.

1.2.3 Espaces fonctionnels

Exemple 1.3

Soit I un intervalle.

• L’application { 𝒟(I, ℝ) ⟶ ℝI

𝑓 ⟼ 𝑓′ est linéaire.

• Soit 𝑎 ∈ ̄I. Notons E leℝ-espace vectoriel des fonctions définies sur I admettant une limite finie en 𝑎. L’application

{
E ⟶ ℝ
𝑓 ⟼ lim

𝑎
𝑓 est une forme linéaire de E.

• Soit 𝑎 ∈ I. L’application { ℝI ⟶ ℝ
𝑓 ⟼ 𝑓(𝑎) est une forme linéaire de ℝI.

1.2.4 Polynômes

Exemple 1.4

• L’application { 𝕂[X] ⟶ 𝕂[X]
P ⟼ P′ est un endomorphisme de 𝕂[X].

• Soit 𝑎 ∈ 𝕂. L’application { 𝕂[X] ⟶ 𝕂
P ⟼ P(𝑎) est une forme linéaire de 𝕂[X].

• Soit Q ∈ 𝕂[X]. L’application { 𝕂[X] ⟶ 𝕂[X]
P ⟼ PQ est un endomorphisme de 𝕂[X].

1.2.5 Espaces 𝕂𝑛

Exemple 1.5

• L’application { ℝ2 ⟶ ℝ3

(𝑥, 𝑦) ⟼ (𝑦 − 2𝑥, 3𝑦 + 𝑥 − 2𝑧, 𝑥 + 𝑧) est linéaire.

• L’application { ℝ2 ⟶ ℝ
(𝑥, 𝑦) ⟼ 𝑥 + 𝑦 + 1 n’est pas linéaire.

• L’application { ℝ2 ⟶ ℝ
(𝑥, 𝑦) ⟼ 𝑥2 + 𝑦2 n’est pas linéaire.
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1.3 Opérations sur les applications linéaires

Théorème 1.1 Opérations sur les applications linéaires

(i) Une combinaison linéaire d’applications linéaires est linéaire :

∀(λ, μ) ∈ 𝕂2, ∀(𝑓, 𝑔) ∈ ℒ(E, F)2, λ𝑓 + μ𝑔 ∈ ℒ(E, F)

(ii) La composée d’applications linéaires est linéaire.
Soient E, F et G trois 𝕂-espaces vectoriels, 𝑓 ∈ ℒ(E, F), 𝑔 ∈ ℒ(F,G). Alors 𝑔 ∘ 𝑓 ∈ ℒ(E,G).

(iii) La composition à gauche et à droite est linéaire.
Soient E, F et G trois 𝕂-espaces vectoriels.

∀(λ, μ) ∈ 𝕂2, ∀𝑓 ∈ ℒ(E, F), ∀(𝑔, ℎ) ∈ ℒ(F,G)2, (λ𝑔 + μℎ) ∘ 𝑓 = λ𝑔 ∘ 𝑓 + μℎ ∘ 𝑓
∀(λ, μ) ∈ 𝕂2, ∀(𝑓, 𝑔) ∈ ℒ(E, F)2, ∀ℎ ∈ ℒ(F,G), ℎ ∘ (λ𝑓 + μ𝑔) = λℎ ∘ 𝑓 + μℎ ∘ 𝑔

Corollaire 1.1 Espace vectoriel ℒ(E, F)

Soient E et F deux 𝕂-espaces vectoriels. ℒ(E, F) est un 𝕂-espace vectoriel. Le vecteur nul de ℒ(E, F) est l’application

nulle { E ⟶ F
𝑥 ⟼ 0F

.

Remarque. ℒ(E, F) est un sous-espace vectoriel de FE.

Corollaire 1.2 Anneau ℒ(E)

(ℒ(E), +, ∘) est un anneau (non commutatif et non intègre en général). De plus, 1ℒ(E) = IdE.

Remarque. Si 𝑢 et 𝑣 sont deux endomorphismes d’un même espace vectoriel, la composée 𝑢 ∘ 𝑣 sera parfois notée 𝑢𝑣.

Exemple 1.6

Les applications { 𝒞∞(ℝ) ⟶ 𝒞∞(ℝ)
𝑓 ⟼ 𝑓′ et { 𝒞∞(ℝ) ⟶ 𝒞∞(ℝ)

𝑓 ⟼ (𝑥 ↦ 𝑥𝑓(𝑥)) sont deux endomorphismes de 𝒞∞(ℝ)

qui ne commutent pas.

Exemple 1.7

Considérons 𝑓∶ { ℝ2 ⟶ ℝ2

(𝑥, 𝑦) ⟼ (𝑥, 0) et 𝑔∶ { ℝ2 ⟶ ℝ2

(𝑥, 𝑦) ⟼ (0, 𝑦) . On a 𝑓, 𝑔 ∈ ℒ(ℝ2) et 𝑔 ∘ 𝑓 = 𝑓 ∘ 𝑔 = 0ℒ(ℝ2) et

pourtant 𝑓 ≠ 0ℒ(ℝ2) et 𝑔 ≠ 0ℒ(ℝ2).

Comme (ℒ(E), +, ∘) est un anneau, on a les deux formules suivantes.
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Proposition 1.1

Soient 𝑓, 𝑔 ∈ ℒ(E) qui commutent.

(i) (𝑓 + 𝑔)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑓𝑘 ∘ 𝑔𝑛−𝑘

(ii) 𝑓𝑛 − 𝑔𝑛 = (𝑓 − 𝑔)
𝑛−1
∑
𝑘=0

𝑓𝑘 ∘ 𝑔𝑛−1−𝑘

La notion suivante n’est pas au programme de MPSI.

Structure d’algèbre

Soit 𝕂 un corps. On appele 𝕂-algèbre tout quadruplet (𝒜,+, ., ×) tel que :

(i) (A,+, .) est un 𝕂-espace vectoriel ;

(ii) (A,+,×) est un anneau ;

(iii) ∀(λ, μ) ∈ 𝕂2, ∀(𝑥, 𝑦) ∈ 𝒜2, (λ.𝑥) × (μ.𝑦) = (λμ).(𝑥 × 𝑦).

Si × est commutative, on dit que l’algèbre est commutative.

Exemple 1.8

Si (E, +, .) est un 𝕂-espace vectoriel, (ℒ(E), +, ., ∘) est une 𝕂-algèbre non commutative en général.

1.4 Isomorphismes linéaires

Définition 1.2 Isomorphisme linéaire

Soient E et F deux 𝕂-espaces vectoriels. On appelle isomorphisme (linéaire) toute application linéaire bijective de E
sur F.
Un isomorphisme de E sur E est appelé un automorphisme.
On dit que E est isomorphe à F ou que E et F sont isomorphes s’il existe un isomorphisme de E sur F.

Proposition 1.2 Propriétés des isomorphismes

Soient E, F et G trois 𝕂-espaces vectoriels.

(i) Si 𝑓 est un isomorphisme de E sur F, 𝑓−1 est un isomorphisme de F sur E.

(ii) Si 𝑓 est un isomorphisme de E sur F et 𝑔 un isomorphisme de F sur G, alors 𝑔 ∘ 𝑓 est un isomorphisme de E sur G.

Exemple 1.9

L’application

{ ℂ ⟶ ℝ2

𝑧 ⟼ (Re(𝑧), Im(𝑧))

est un isomorphisme de du ℝ-espace vectoriel ℂ sur ℝ2 d’isomorphisme réciproque

{ ℝ2 ⟶ ℂ
(𝑎, 𝑏) ⟼ 𝑎+ 𝑖𝑏
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Corollaire 1.3 Groupe linéaire

Soit E un𝕂-espace vectoriel. L’ensemble des automorphismes de Emuni de la loi ∘ est un groupe. On l’appelle le groupe
linéaire de E et on le note GL(E). Plus précisément, c’est le groupe des éléments inversibles de ℒ(E).

Exemple 1.10

L’espace vectoriel des suites récurrentes linéaires d’ordre 2 de polynôme caractéristique X2+𝑎X+𝑏 est isomorphe à 𝕂2.

Exercice 1.1

Soit 𝑓 ∈ ℒ(E) tel que 𝑓2 − 2𝑓 + 3 IdE = 0. Montrer que 𝑓 ∈ GL(E) et déterminer 𝑓−1 en fonction de 𝑓.

2 Images directe et réciproque par une application linéaire

2.1 Images directe et réciproque d’un sous-espace vectoriel

Proposition 2.1 Images directe et réciproque d’un sous-espace vectoriel

Soient E et F deux𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F). SoitA un sous-espace vectoriel de E et B un sous-espace vectoriel
de F. ALors

(i) 𝑓(A) est un sous-espace vectoriel de F ;

(ii) 𝑓−1(B) est un sous-espace vectoriel de E.

2.2 Noyau et image d’une application linéaire

Définition 2.1 Noyau et image d’une application linéaire

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F).

(i) Le noyau de 𝑓 noté Ker(𝑓) est défini par Ker𝑓 = 𝑓−1({0F}). C’est un sous-espace vectoriel de E.

(ii) L’image de 𝑓 notée Im(𝑓) est définie par Im𝑓 = 𝑓(E). C’est un sous-espace vectoriel de F.

Méthode Montrer qu’un ensemble est un sous-espace vectoriel

Soit F une partie d’un 𝕂-espace vectoriel E. Pour montrer que F est un sous-espace vectoriel de E, il suffit de montrer
que F est le noyau d’une application linéaire de E dans un autre 𝕂-espace vectoriel.

Exemple 2.1

L’ensemble
F = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥 + 𝑦 + 𝑧 = 0}

est le noyau de la forme linéaire

{ ℝ3 ⟶ ℝ
(𝑥, 𝑦, 𝑧) ⟼ 𝑥 + 𝑦 + 𝑧

F est donc un sous-espace vectoriel de ℝ3.
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Exemple 2.2

L’application { 𝒞2(ℝ) ⟶ 𝒞0(ℝ)
𝑓 ⟼ 𝑓″ est linéaire. Son noyau, à savoir l’ensemble des fonctions affines de ℝ dans ℝ est

donc un sous-espace vectoriel de 𝒞2(ℝ) et donc un espace vectoriel.

Exercice 2.1

Soient 𝑓 ∈ ℒ(E, F) et 𝑔 ∈ ℒ(F,G). Montrer que Ker𝑓 ⊂ Ker(𝑔 ∘ 𝑓) et que Im(𝑔 ∘ 𝑓) ⊂ Im 𝑔.
Montrer que 𝑔 ∘ 𝑓 = 0 si et seulement si Im𝑓 ⊂ Ker 𝑔.

Théorème 2.1 Injectivité et surjectivité d’une application linéaire

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F).

(i) 𝑓 est injective si et seulement si Ker𝑓 = {0E}.

(ii) 𝑓 est surjective si et seulement si Im𝑓 = F.

Exemple 2.3

Soit 𝑓∶ { 𝕂[X] ⟶ 𝕂[X]
P ⟼ P′ . Alors Ker𝑓 = 𝕂0[X] et Im𝑓 = 𝕂[X]. Ainsi 𝑓 est surjective mais pas injective.

Exemple 2.4

Soit 𝑓∶ { 𝕂ℕ ⟶ 𝕂ℕ

(𝑢𝑛) ⟼ (𝑢𝑛+1 − 𝑢𝑛)
. Alors Ker𝑓 = vect((1)) et Im𝑓 = 𝕂ℕ.

Exercice 2.2

Soit 𝑓 ∈ ℒ(E) nilpotent. Montrer que 𝑓 est non injectif.

Exercice 2.3

Soient E un 𝕂-espace vectoriel et 𝑢1,… , 𝑢𝑛 ∈ E.

Notons Φ ∶ {
𝕂𝑛 ⟶ E

(λ1,… , λ𝑛) ⟼
𝑛
∑
𝑖=1

λ𝑖𝑢𝑖
. Démontrer les assertions suivantes.

(i) La famille (𝑢1,… , 𝑢𝑛) engendre E si et seulement si Φ est surjective.

(ii) La famille (𝑢1,… , 𝑢𝑛) est libre si et seulement si Φ est injective.

(iii) La famille (𝑢1,… , 𝑢𝑛) est une base de E si et seulement si Φ est injective.
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2.3 Image d’une famille de vecteurs

Proposition 2.2

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F). Soit A ⊂ E. Alors 𝑓 (vect(A)) = vect (𝑓(A)).
En particulier, si (𝑢𝑖)𝑖∈I est une famille génératrice de E (notamment une base), (𝑓(𝑢𝑖))𝑖∈I engendre Im𝑓.

Proposition 2.3

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F). Soit (𝑢𝑖)𝑖∈I une base de E.

(i) 𝑓 est surjective si et seulement si (𝑓(𝑢𝑖))𝑖∈I engendre F.

(ii) 𝑓 est injective si et seulement si (𝑓(𝑢𝑖))𝑖∈I est libre dans F.

(iii) 𝑓 est bijective si et seulement si (𝑓(𝑢𝑖))𝑖∈I est une base de F.

Exercice 2.4

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F).

1. Montrer que 𝑓 est surjective si et seulement si l’image d’une famille génératrice de E est une famille génératrice de F.

2. Montrer que 𝑓 est injective si et seulement si l’image de toute famille libre de E est une famille libre de E.

Proposition 2.4 Caractérisation d’une application linéaire par l’image d’une base

Soient E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F). Soient (𝑒𝑖)𝑖∈I une base de E et (𝑓𝑖)𝑖∈I une famille de F. Il existe
une unique application linéaire 𝑓 ∈ ℒ(E, F) telle que 𝑓(𝑒𝑖) = 𝑓𝑖 pour tout 𝑖 ∈ I.

Remarque. Ce résultat signifie que pour définir une application linéaire, il suffit de la définir sur une base. Il prendra
toute son importance lors de l’étude des matrices.

2.4 Cas d’une application de 𝕂𝑛 dans 𝕂𝑝

Une application linéaire de 𝕂𝑛 dans 𝕂𝑝 est souvent donnée sous forme d’un 𝑝-uplet d’expressions linéaires en fonction des
𝑛 coordonnées d’un élément de 𝕂𝑛.

Exemple 2.5

L’application

𝑓∶ { ℝ3 ⟶ ℝ3

(𝑥, 𝑦, 𝑧) ⟼ (𝑥 + 2𝑦 + 𝑧, 2𝑥 + 𝑦 − 𝑧, 𝑥 + 2𝑦 + 𝑧)

est un endomorphisme de ℝ3.
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Méthode Déterminer le noyau

Le noyau de 𝑓 est le sous-espace vectoriel de ℝ3 défini par le système linéaire

{
𝑥 + 2𝑦 + 𝑧 = 0
2𝑥 + 𝑦 − 𝑧 = 0

On a vu dans un chapitre précédent comment déterminer une base de ce sous-espace vectoriel.

Méthode Déterminer l’image

L’image est formé des vecteurs 𝑥(1, 2, 1) + 𝑦(2, 1, 2) + 𝑧(1, −1, 1) avec (𝑥, 𝑦, 𝑧) ∈ ℝ3. Ainsi

Im𝑓 = vect((1, 2, 1), (2, 1, 2), (1, −1, 1))

On a vu dans un chapitre précédent comment déterminer une base et un système d’équations cartésiennes de ce sous-
espace vectoriel.
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Méthode Déterminer le noyau et l’image en même temps !

On reprend la méthode matricielle utilisée pour déterminer le noyau. On écrit d’abord la matrice correspondant à 𝑓 puis
on ajoute une matrice carrée formée de zéros et de 1 sur la diagonale.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 1
2 1 −1
1 2 1

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Puis on pivote sur les colonnes.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
2 −3 −3
1 0 0

1 −2 −1
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C2 ← C2 − 2C1
C3 ← C3 − C1

Encore une fois pour avoir la dernière colonne nulle.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
2 −3 0
1 0 0

1 −2 −3
0 1 −1
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C3 ← C3 − C2

On a alors Im𝑓 = vect((1, 2, 1), (0, −3, 0)) et Ker𝑓 = vect((−3, −1, 1)).

2.5 Restriction et corestriction d’une application linéaire

Proposition 2.5 Restriction et corestriction d’une application linéaire

Soit 𝑓 ∈ ℒ(E, F).

(i) Si G un sous-espace vectoriel de E, alors 𝑓|G ∈ ℒ(G, F).

(ii) Si H est un sous-espace vectoriel de F contenant Im𝑓, alors 𝑓|H ∈ ℒ(E,H).

(iii) Si G est un sous-espace vectoriel de E etH est un sous-espace vectoriel de F contenant 𝑓(G), alors 𝑓|H|G ∈ ℒ(G,H).
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Exemple 2.6

Soient 𝑓 ∈ ℒ(E, F) et G un sous-espace vectoriel de E. Alors Ker𝑓|G = Ker𝑓 ∩ G et Im𝑓|G = 𝑓(G).
Soient 𝑓 ∈ ℒ(E, F) et 𝑔 ∈ ℒ(F,G). Alors Im 𝑔| Im𝑓 = Im 𝑔 ∘ 𝑓.

Remarque. Soit 𝑓 ∈ ℒ(E). Si F est un sous-espace vectoriel de E stable par 𝑓 i.e. 𝑓(F) ⊂ F, on dit que 𝑓 induit un
endomorphisme de F (qui n’est autre que 𝑓|F|F ).

Proposition 2.6

Soient E et F des 𝕂-espaces vectoriels et (E1, E2) un couple de sous-espaces vectoriels de E tels que E = E1 ⊕E2.
Soient (𝑢1, 𝑢2) ∈ ℒ(E1, F) × ℒ(E2, F). Il existe une unique application linéaire 𝑢 ∈ ℒ(E, F) telle que 𝑢|E1 = 𝑢1 et
𝑢|E1 = 𝑢2.

Théorème 2.2

Soit E et F deux espaces vectoriels avec E. Soit 𝑓 ∈ ℒ(E, F). Si S est un supplémentaire de Ker𝑓 dans E, alors 𝑓 induit
un isomorphisme de S sur Im𝑓.

Remarque. Autrement dit, 𝑓| Im𝑓
|S est bijective.

Remarque. En termes savants, on dit qu’on factorise 𝑓 par son noyau.

2.6 Formes linéaires et hyperplans

Définition 2.2 Formes coordonnées dans une base

Soit E un 𝕂-espace vectoriel muni d’une base (𝑒𝑖)𝑖∈I. Pour tout 𝑖 ∈ I, il existe une unique forme linéaire sur 𝑒∗𝑖 telle que
𝑒∗𝑖 (𝑒𝑗) = δ𝑖,𝑗 pour tout 𝑗 ∈ I.
La famille (𝑒∗𝑖 )𝑖∈I s’appelle la famille des formes coordonnées relativement à la base (𝑒𝑖)𝑖∈I.

Proposition 2.7

Soit E un 𝕂-espace vectoriel muni d’une base (𝑒𝑖)𝑖∈I. Pour tout 𝑥 ∈ E, 𝑥 = ∑
𝑖∈I

𝑒∗𝑖 (𝑥)𝑒𝑖.

Remarque. De là vient le nom de «formes coordonnées».

Définition 2.3 Hyperplan

Soit E un 𝕂-espace vectoriel. On appelle hyperplan de E tout noyau d’une forme linéaire non nulle sur E.

http://lgarcin.github.io 10

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Exemple 2.7

L’application { ℝ3 ⟶ ℝ
(𝑥, 𝑦, 𝑧) ⟼ 4𝑥 − 5𝑦 + 3𝑧 est une forme linéaire de ℝ3.

H = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 4𝑥 − 5𝑦 + 3𝑧 = 0} est donc un hyperplan de ℝ3.

Exemple 2.8

Soit 𝑎 ∈ 𝕂. L’application { 𝕂[X] ⟶ 𝕂
P ⟼ P(𝑎) est une forme linéaire sur 𝕂[X].

H = {P ∈ 𝕂[X] | P(𝑎) = 0} est donc un hyperplan de 𝕂[X].

Proposition 2.8 Hyperplans et droites vectorielles

Soit E un 𝕂-espace vectoriel.

(i) Si H est un hyperplan de E et si D est une droite vectorielle de E non contenue dans H, alors E = H⊕D.

(ii) Tout supplémentaire d’une droite vectorielle de E est un hyperplan.

(iii) Tout supplémentaire d’un hyperplan de E est une droite vectorielle.

3 Applications linéaires en dimension finie

3.1 Isomorphisme et dimension

Théorème 3.1 Isomorphisme et dimension

(i) Si deux espaces vectoriels E et F sont isomorphes et si E est de dimension finie, alors F est de dimension finie et
dimE = dimF.

(ii) Deux espaces vectoriels de même dimension finie sont isomorphes.

Remarque. Ce résultat est d’une importance capitale puisqu’il dit que tous les espaces vectoriels de dimension 𝑛 sont
isomorphes à 𝕂𝑛. L’étude d’un espace vectoriel de dimension 𝑛 se résume par exemple à l’étude de 𝕂𝑛, ce qu’exploite à
fond la théorie des matrices.

Remarque. Soient E et F deux 𝕂-espaces vectoriels de dimension finie.
Si 𝑓 ∈ ℒ(E, F) est seulement injective, on peut tout de même affirmer que dimE ≤ dimF.
Si 𝑓 ∈ ℒ(E, F) est seulement surjective, on peut tout de même affirmer que dimE ≥ dimF.

Exemple 3.1

ℝ2 et ℂ sont isomorphes en tant que ℝ-espaces vectoriels.

Exemple 3.2

𝕂ℕ n’est pas de dimension finie. En effet, le sous-espace vectoriel des suites presque nulles 𝕂(ℕ) est isomorphe à 𝕂[X].
Or 𝕂[X] n’est pas de dimension finie donc 𝕂(ℕ) non plus. Comme 𝕂(ℕ) est un sous-espace vectoriel de 𝕂ℕ, ce dernier
n’est pas non plus de dimension finie.
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Exemple 3.3

Soit 𝑝 ∈ ℕ∗. L’ensemble E des suites réelles 𝑝-périodiques est un ℝ-espace vectoriel de dimension 𝑝 car

{ E ⟶ ℝ𝑝

(𝑢𝑛) ⟼ (𝑢0,… , 𝑢𝑝−1)

est un isomorphisme.

3.2 Rang d’une application linéaire

Définition 3.1 Rang d’une application linéaire

Soit E et F deux 𝕂-espaces vectoriels et 𝑓 ∈ ℒ(E, F). On dit que 𝑓 est de rang fini si Im𝑓 est de dimension finie. On
appelle alors rang de 𝑓 la dimension de Im𝑓 et on la note rg𝑓.

Remarque. Si (𝑢𝑖)𝑖∈I est une famille génératrice de E et si 𝑓 ∈ ℒ(E, F) est de rang fini, alors rg𝑓 = rg((𝑓(𝑒𝑖)𝑖∈I).
Si 𝑓 ∈ ℒ(E, F) e E et F sont de dimensions finies, rg𝑓 ≤ min(dimE, dimF).
Si 𝑓 ∈ ℒ(E, F) et siG est un sous-espace vectoriel deE de dimension finie, alors 𝑓(G) est de dimension finie et dim𝑓(G) ≤
dimG (une application linéaire fait toujours baisser la dimension).

Méthode Déterminer le rang d’une application linéaire de 𝕂𝑛 dans 𝕂𝑝

On a vu au chapitre précédent comment déterminer une base de l’image d’une telle application linéaire. Le cardinal de
cette base est le rang de l’application linéaire.

Corollaire 3.1 Théorème du rang

Soit E et F deux espaces vectoriels avec E de dimension finie. Soit 𝑓 ∈ ℒ(E, F). Alors

dimE = rg𝑓 + dim Ker𝑓

Exemple 3.4

On peut prouver différemment la formule dimE × F = dimE + dimF en considérant l’application { E × F ⟶ E
(𝑥, 𝑦) ⟼ 𝑥 .

Exemple 3.5

On peut aussi prouver différemment la formule de Grassmann dimF + G = dimF + dimG − dimF ∩ G en considérant

l’application { F × G ⟶ E
(𝑥, 𝑦) ⟼ 𝑥 + 𝑦 .

Corollaire 3.2 Injectivité, surjectivité et rang

Soient E et F deux espaces vectoriels de dimension finie et 𝑓 ∈ ℒ(E, F). Alors

(i) 𝑓 est surjective si et seulement si rg𝑓 = dimF.

(ii) 𝑓 est injective si et seulement si rg𝑓 = dimE.
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Corollaire 3.3

Soient E et F deux espaces vectoriels de même dimension finie et 𝑓 ∈ ℒ(E, F). Alors les propositions suivantes sont
équivalentes :

(i) 𝑓 est bijective.

(ii) 𝑓 est injective.

(iii) 𝑓 est surjective.

C’est en particulier le cas lorsque 𝑓 est un endomorphisme d’un espace vectoriel de dimension finie.

Remarque. Soit 𝑓 ∈ ℒ(E, F).

• Si dimE < dimF, 𝑓 ne peut être surjective.

• Si dimE > dimF, 𝑓 ne peut être injective.

Méthode Prouver qu’une application linéaire est un isomorphisme

Si on sait que les dimensions de l’espace d’arrivée et de l’espace de départ sont égales, pour montrer qu’une application li-
néaire est bijective, il suffit de montrer qu’elle est injective ou surjective (en pratique, on montre plus souvent l’injectivité).
Encore une fois, travail divisé par deux grâce à la dimension !

Exercice 3.1

Montrer que { ℝ3 ⟶ ℝ3

(𝑥, 𝑦, 𝑧) ⟼ (𝑥 + 𝑦,−𝑥 + 𝑦, 𝑧) est un automorphisme de ℝ3.

Proposition 3.1

Soient E et F deux espaces vectoriels de même dimension finie et 𝑓 ∈ ℒ(E, F). Alors 𝑓 est bijective si et seulement si il
existe 𝑔 ∈ ℒ(F, E) tel que 𝑔 ∘ 𝑓 = IdE ou 𝑓 ∘ 𝑔 = IdF. Dans ce cas 𝑔 = 𝑓−1.

Remarque. En dimension finie, il suffit donc de prouver l’inversibilité à gauche ou à droite.
On suppose E de dimension finie. Pour montrer que 𝑓 ∈ ℒ(E) est un automorphisme d’inverse 𝑔 ∈ ℒ(E), il suffit de
prouver que 𝑔 ∘ 𝑓 = IdE ou 𝑓 ∘ 𝑔 = IdE.

Proposition 3.2 Invariance du rang par composition avec un isomorphisme

Soient E, F et G trois espaces vectoriels de dimension finie, 𝑢 ∈ ℒ(E, F) et 𝑣 ∈ ℒ(F,G).

(i) rg(𝑣 ∘ 𝑢) ≤ min(rg𝑢, rg 𝑣).

(ii) Si 𝑢 est un isomorphisme, alors rg 𝑣 ∘ 𝑢 = rg 𝑣.

(iii) Si 𝑣 est un isomorphisme, alors rg 𝑣 ∘ 𝑢 = rg𝑢.
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3.3 Dimension de ℒ(E, F)

Exercice 3.2

Soient E et F deux 𝕂-espaces vectoriels de dimension finie de bases respectives (𝑒𝑖)1≤𝑖≤𝑛 et (𝑓𝑗)1≤𝑗≤𝑝.

Montrer que l’application {
ℒ(E, F) ⟶ 𝕂⟦1,𝑛⟧×⟦1,𝑝⟧

𝑢 ⟼ (𝑓∗𝑗 (𝑢(𝑒𝑖)))1≤𝑖≤𝑛
1≤𝑗≤𝑝

est un isomorphisme.

Proposition 3.3 Dimension de ℒ(E, F)

Soient E et F deux 𝕂-espaces vectoriels de dimension finie. Alors ℒ(E, F) est aussi de dimension finie et

dimℒ(E, F) = dimE × dimF

Remarque. En particulier, si E est de dimension finie, dimE∗ = dimE. On montre alors que si (𝑒1,… , 𝑒𝑛) est une base
de E, alors (𝑒∗1 ,… , 𝑒∗𝑛) est une base de E∗.

3.4 Formes linéaires et hyperplans en dimension finie

Proposition 3.4 Hyperplans en dimension finie

Soit E un 𝕂-espace vectoriel de dimension finie 𝑛 ∈ ℕ∗. Alors les hyperplans de E sont les sous-espaces vectoriels de E
de dimension 𝑛 − 1.

Exemple 3.6

Les hyperplans de l’espace vectoriel géométrique sont les plans vectoriels. Les hyperplans du plan vectoriel géométrique
sont les droites vectorielles.

Proposition 3.5 Équations d’un hyperplan en dimension finie

Soit E un 𝕂-espace vectoriel de dimension 𝑛 ∈ ℕ∗ muni d’une base (𝑒𝑖)1≤𝑖≤𝑛.

(i) Tout hyperplan de E admet une équation de la forme
𝑛
∑
𝑘=1

𝑎𝑘𝑥𝑘 = 0 où (𝑎1,… , 𝑎𝑛) ∈ 𝕂𝑛 ∖{(0,… , 0)} et (𝑥1,… , 𝑥𝑛)

sont les coordonnées dans la base (𝑒𝑖)1≤𝑖≤𝑛.

(ii) Soient (𝑎1,… , 𝑎𝑛) et (𝑏1,… , 𝑏𝑛) des 𝑛-uplets de 𝕂𝑛 non nuls. Alors
𝑛
∑
𝑘=1

𝑎𝑘𝑥𝑘 = 0 et
𝑛
∑
𝑘=1

𝑏𝑘𝑥𝑘 sont deux équations

d’un même hyperplan si et seulement si les 𝑛-uplets (𝑎1,… , 𝑎𝑛) et (𝑏1,… , 𝑏𝑛) sont colinéaires.

Exemple 3.7

Tout plan vectoriel de ℝ3 admet une équation de la forme 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 où (𝑎, 𝑏, 𝑐) ≠ (0, 0, 0).
Pour tout λ ∈ ℝ∗, λ𝑎𝑥 + λ𝑏𝑦 + λ𝑐𝑧 = 0 est également une équation de ce même hyperplan.

http://lgarcin.github.io 14

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Proposition 3.6 Intersections d’hyperplans

Soient E un 𝕂-espace vectoriel de dimension finie 𝑛 ∈ ℕ et 𝑚 ∈ ℕ∗.

(i) L’intersection de 𝑚 hyperplans de E est de dimension au moins 𝑛 − 𝑚.

(ii) Tout sous-espace vectoriel de dimension 𝑛 − 𝑚 est l’intersection de 𝑚 hyperplans.

Exemple 3.8

Une droite vectorielle de ℝ3 est l’intersection de deux plans vectoriels de ℝ3.
Elle admet donc un système d’équations cartésiennes formé par deux équations de plans.

Exemple 3.9

L’ensemble des solutions d’un système linéaire homogène à 𝑚 équations à coefficients dans 𝕂 et à 𝑛 inconnues dans 𝕂
est un sous-espace vectoriel de 𝕂𝑛 de dimension au moins 𝑛 − 𝑚.

4 Projecteurs, symétries, homothéties

4.1 Projecteurs et symétries

Définition 4.1 Projecteur et symétrie

Soient F et G deux sous-espaces vectoriels supplémen-
taires dans un 𝕂-espace vectoriel E. Tout vecteur 𝑥 de
E se décompose de manière unique sous la forme 𝑥 =
𝑥F + 𝑥G.

(i) On appelle projecteur sur F parallèlement à G
l’application qui à 𝑥 associe 𝑥F.

(ii) On appelle symétrie par rapport F parallèlement
à G l’application qui à 𝑥 associe 𝑥F − 𝑥G.

Le sous-espace vectoriel G est appelé la direction du pro-
jecteur ou de la symétrie.

G

𝑠(𝑥)

F

G
𝑥

𝑝(𝑥)

Remarque. Si 𝑝 est le projecteur sur F parallélement àG et 𝑞 est le projecteur surG parallélement à F, alors 𝑝+𝑞 = IdE.

Remarque. Si 𝑝 et 𝑠 sont le projecteur et la symétrie associés au même couple de sous-espaces supplémentaires, alors
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𝑠 = 2𝑝 − IdE ou encore 𝑝 = 1
2 (𝑠 + IdE).

Proposition 4.1 Propriétés des projecteurs

Soient F et G deux sous-espaces vectoriels supplémentaires dans un 𝕂-espace vectoriel E. Soit 𝑝 le projecteur sur F
parallèlement à G.

(i) 𝑝 est un endomorphisme de E.

(ii) 𝑝2 = 𝑝.

(iii) Ker𝑝 = Im(𝑝 − IdE) = G et Im𝑝 = Ker(𝑝 − IdE) = F.

Remarque. 𝑥 ∈ G ⟺ 𝑝(𝑥) = 0E et 𝑥 ∈ F ⟺ 𝑝(𝑥) = 𝑥.

Proposition 4.2 Caractérisation des projecteurs

Soit 𝑝 ∈ ℒ(E). Alors 𝑝 est un projecteur si et seulement si 𝑝2 = 𝑝.
Dans ce cas, E = Ker𝑝 ⊕ Im𝑝 et 𝑝 est le projecteur sur Im𝑝 = Ker(𝑝 − IdE) parallèlement à Ker𝑝.

Remarque. 𝑥 ∈ Im𝑝 ⟺ 𝑝(𝑥) = 𝑥.

Exemple 4.1

Soit 𝑛 ∈ ℕ. L’application qui à un polynôme associe la somme de ses monômes de degré inférieur ou égal à 𝑛 est le
projecteur sur 𝕂𝑛[X] parallèlement à X𝑛+1𝕂𝑛[X].

Proposition 4.3 Propriétés des symétries

Soient F et G deux sous-espaces vectoriels supplémentaires dans un 𝕂-espace vectoriel E. Soit 𝑠 la symétrie par rapport
à F parallèlement à G.

(i) 𝑠 est un endomorphisme de E.

(ii) 𝑠2 = IdE.

(iii) Ker(𝑠 − IdE) = F et Ker(𝑠 + IdE) = G.

Remarque. La dernière assertion signifie que 𝑥 ∈ F ⟺ 𝑠(𝑥) = 𝑥 et que 𝑥 ∈ G ⟺ 𝑠(𝑥) = −𝑥.

Proposition 4.4 Caractérisation des symétries

Soit 𝑠 ∈ ℒ(E). Alors 𝑠 est une symétrie si et seulement si 𝑠2 = IdE.
Dans ce cas, E = Ker(𝑠 − IdE) ⊕Ker(𝑠 + IdE) et 𝑠 est la symétrie par rapport Ker(𝑠 − IdE) parallèlement à Ker(𝑠 + IdE).

Exemple 4.2

L’application qui à une fonction 𝑓 de ℝ dans ℝ associe la fonction 𝑥 ↦ 𝑓(−𝑥) est la symétrie par rapport au sous-espace
vectoriel des fonctions paires parallèlement au sous-espace vectoriel des fonctions impaires.
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Remarque. Soient F etG deux sous-espaces vectoriels supplémentaires dans un espace vectoriel E. Si 𝑝 est le projecteur
sur F parallèlement à G et 𝑠 la symétrie par rapport à F parallèlement à G, alors 𝑠 = 2𝑝 − IdE.

4.2 Homothéties

Définition 4.2 Homothétie

Soient E un 𝕂-espace vectoriel et λ ∈ 𝕂. On appelle homothétie de E de rapport λ l’endomorphisme λ IdE.

Exercice 4.1

Montrer que les endomorphismes de E commutant avec tous les endomorphismes de E sont les homothéties.
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