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ARITHMETIQUE DES ENTIERS RELATIFS

Commencons par une propriété fondamentale de I’ensemble des entiers naturels.

Théoreme 0.1

Toute partie non vide et majorée de N possede un plus grand élément. Toute partie non vide de N posseéde un plus petit
élément.

REMARQUE. Toute partie non vide et minorée de Z admet un plus petit élément. Toute partie non vide et majorée de Z
admet un plus grand élément.

1 Division dans Z

1.1 Relation de divisibilité

Définition 1.1 Divisibilité, diviseur, multiple

Soit (a, b) € Z2. On dit que a divise b et on note a | b s’il existe k € Z tel que b = ka. Dans ce cas, on dit que a est un
diviseur de b ou que b est un multiple de a.

REMARQUE. 1 divise tous les entiers. 0 est divisible par tous les entiers.

Proposition 1.1 Propriétés de la divisibilité

Soit (a, b, c,d) € 7*.

Réflexivité a | a.

Transitivité Sia|betb|calorsa | c.

«Pseudo-antisymétrie» Sia | betb | a, alors |a| = |b|.

«Combinaison linéaire» Sid | aetd | b, alors d | au + bv pour tout (u, v) € Z>.

Produit Sia|betc|d, alors ac | bd.
En particulier, si a | b alors a” | b" pour tout n € N.

Multiplication/division par un entier Sid #0,a|b < ad | bd.

AtTENTION! En arithmétique, on travaille sur des entiers. On évite, autant que faire se peut, de manipuler des fractions

b
quand bien mé&me ces fractions seraient entieres. Si, par exemple, a divise b, la fraction — est bien un entier mais plutot
a

que de manipuler la fraction (—l;, il est préférable de définir I’entier k tel que b = ka et de travailler avec cet entier k. Vous

verrez que cela vous évitera nombre d’erreurs.
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1.2 Relation de congruence

La relation de congruence est une extension de la relation de divisibilité.

Définition 1.2 Congruence

Soient (a,b) € Z% et n € N. On dit que a et b sont congrus modulo nsin | b—ai.e. s’il existe k € Z tel que b = a+kn.
On note alors a = b[n].

REMARQUE. En particulier a = 0[n] signifie que n | a.

Exercice 1.1

Que signifie a = 0[2] et a = 1[2]?

Proposition 1.2 Propriétés de la congruence

Soient (a, b,c,d) € Z* et n € N.
(i) Onditque larelation de congruence modulo n est une relation d’équivalence car elle vérifie les conditions suivantes.

Réflexivité a = a[n].
Transitivité Si a = b[n] et b = c[n] alors a = c[n].

Symétrie Sia = b[n], alors b = a[n].
(ii) Sia = b[n]etc =d[n],alorsa+c=b+d[n].
(iii) Si a = b[n] et ¢ = d[n], alors ac = bd[n]. En particulier, si a = b[n], alors a¥ = b¥[n] pour tout k € N.

(iv) Soit m € N*. Alors a = b[n] < am = bm[mnl].

1.3 Division euclidienne

Proposition 1.3 Division euclidienne

Soient a € Z et b € N*. Alors il existe un unique couple d’entiers (q,r) € Z x N vérifiant :
(i) a=bq+r (ii)y 0<sr<b-1

a s’appelle le dividende, b le diviseur, q le quotient, et r le reste.

AtTENTION! Ne jamais oublier la deuxiéme condition sinon il n’y a plus unicité.

REMARQUE. En termes de congruence, on a donc a = r[b]. De plus, g = [%J.

Proposition 1.4

Soient a € Z et b € N*. Alors b divise a si et seulement si le reste de la division euclidienne de a par b est nul.
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Sous-groupes de (Z, +)

Les sous-groupes de (Z, +) sont les aZ avec a € Z. De plus, on a :
(i) aZzCcbZ < b|a.

(i) aZ =bZ < a = +b.

2 Diviseurs et multiples communs

Définition 2.1

Soit (a, b) € Z2. On appelle diviseur commun de a et b tout entier qui divise a la fois a et b. On appelle multiple commun
de a et b tout entier qui est a la fois multiple de a et multiple de b.

2.1 PGCD d’un couple d’entiers

Définition 2.2 PGCD

Soit (a, b) € Z2. On appelle plus grand commun diviseur (PGCD) du couple (a, b) tout entier d € Z vérifiant :
(i) destun diviseur commundeaetbie.d|aErd|b;

(ii) tout diviseur commun de a et b divise di.e. V6 € Z,(§ | aerd | b)=> & | d.

REMARQUE. Le pgcd est le plus grand au sens de la divisibilité : si (a, b) € N2, a A b est 1a borne inférieure de la partie
{a, b} pour la relation d’ordre que constitue la divisibilité.

Proposition 2.1 Existence et «unicité» du pged

Soit (a, b) € Z2. 1l existe un unique pged positif de (a, b). On le note a A b.
Deux pged de (a, b) sont égaux ou opposés.

REMARQUE. On montre en fait que aZ + bZ = (a Ab)Z.

\Y (3 WG Prouver que deux couples d’entiers ont le méme pged

Soient (a, b) et (¢, d) deux couples d’entiers relatifs. Pour montrer que a Ab = ¢ Ad, on peut montrer :

e aAbdivisecetd;

* cAddivise aetb.

Proposition 2.2 Propriétés du pged

Soit (a, b) € Z2.
(i) Pourtoutk € Z, ka Akb = |k|(a A D).
b anb

(ii) Pour tout diviseur commun d # 0 de a et b, % A 7= W
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P
Lemme 2.1

L Soit (a, b, k) € Z3. Alors aAb = a A(b + ka).

REMARQUE. Notamment, si r est le reste de la division euclidienne de a par b, alors aAb = b Ar.

L algorithme suivant permet de déterminer le pged de deux entiers par une succession de divisions euclidiennes.

— Algorithme d’Euclide

On définit une suite (r,) de la maniére suivante :
1. Onposer, =aetr =b.
2. Pour n > 1, 1,41 est le reste de la division euclidienne de r,,_; par r,.

(r,) est une suite strictement décroissante d’entiers naturels (a partir du rang 1) : elle est donc nulle & partir d’un certain
rang. Soit N I’indice du dernier terme non nul. Le lemme précédent montre que

a/\b=r0/\r1 =RAL =" =WNAIN+ = VN/\O =N

Exemple 2.1

Déterminons le pged de 150 et 54.

150 =2 X 54 + 42
54=1%X42+12
42=3X12+6
12=2%x6 +0

On a donc 150 A 54 = 6.

— Implémentation de I’algorithme d’Euclide

On peut proposer la fonction Python suivante.

def euclide(a, b):
while b != 0:
a, b=>b, a%hb
return abs(a) # Le PGCD est positif par définition

>>> euclide(150, 54), euclide(156, -180)
(6, 12)

La relation a Ab = b Ar permet également de donner une version récursive de cet algorithme.
def euclide_rec(a, b):
return abs(a) if b == 0 else euclide_rec(b, a % b) # Le PGCD est positif par
- définition

>>> euclide_rec(150, 54), euclide_rec(156, -180)
(6, 12)
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Théoréme 2.1 Bézout

Soit (a, b) € Z2. 1l existe (u,v) € Z tels que au + bv = a A b. On appelle (1, v) un couple de coefficients de Bézout.
Une égalité du type précédent s’appelle une identité de Bézout.

ArtEnTION! Ces coefficients ne sont pas uniques. Si (1, V) est un couple de coefficients de Bézout, tous les couples de
la forme (ug + kb, vy — ka) avec k € Z le sont aussi.

REMARQUE. La réciproque de ce théore¢me est fausse. Ainsi 6 = 6 X 6 — 2 X 15 mais 6 A15 # 6. Néanmoins, on a le
résultat suivant pour (a, b,d) € Z3.

(3(w,v) € 7% au+bv=d) < anb|d

——— Algorithme d’Euclide étendu

On reprend les notations de 1’algorithme d’Euclide. Pour tout n > 1, on a 1,1 = 1, — q,F,_1. Le dernier reste non nul ry
est le pged d de a et b. On abrégera combinaison linéaire a coefficients entiers en CLE. On peut ainsi exprimer d comme
une CLE de ry_; et iy_». Puis comme on peut exprimer riy_; comme une CLE de ry_, et iy_3, on peut exprimer d comme
une CLE de ry_, et ry_s, etc... Finalement on peut exprimer d comme une CLE de ry = a et ; = b. Plutét qu’un long
discours, reprenons I’exemple traité pour I’algorithme d’Euclide standard.

Exemple 2.2

Réécrivons les divisions euclidiennes de 1’algorithme d’Euclide standard sous une autre forme :

42 =150 — 2 X 54
12=54 —1Xx42
6=42 —3x12

On part ensuite du pged et on remonte les lignes de la maniere suivante :
6=1x42-3x%x12
=1X42-3%x(54—1x42)
=-3X544+4x%x42

= —3X 5444 % (150 — 2 X 54)
=4x150—11 X 54

Et voila notre identité de Bézout.

REMARQUE. Pour des entiers «petits», il peut étre plus rapide de déterminer les coefficients de Bézout par tatonnements
plutdt que par 1’algorithme précédent.
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— Implémentation de I’algorithme d’Euclide étendu

On souhaite déterminer des couples d’entiers (u,,, v,,) tels que
au, + bv, =1,
Puisque 1y = aetr; = b, on pose
ug=1 vy =0 u; =0 v, =1
On sait que 1, , est le reste de la division euclidienne de r, par r,,, c’est-a-dire

T = Qutn+1 + Ttz

ou encore
auy, + bv, = qu(auygy + boyyy) + allyys + bupy,

On peut donc poser

Upt2 = Up — Qulp4 Un+2 = Un — Qnlny1
On en déduit la fonction Python suivante.

def bezout(a, b):
u, v, uu, vv = 1, 0, 0, 1
while b !'= 0:
a, b, g=b, a%b, a//b
u, Vv, uu, VV = Uu, VvV, U - g * uu, Vv - q * VvV
return (-uu, -vv) if a < 0 else (uu, vv) # Le PGCD est positif par définition

>>> bezout(150, 54), bezout(156, -180)
((_91 25)1 (_151 _13))

On peut également proposer une version récursive. Si a = bq +r est la division euclidienne de a par b et si on connait
(u,v) € Z? tel que ub + vr = b Ar, alors

aAb=bAr=ub+vr=ub+v(a—bq)=va+(u—qu)b

def bezout_rec(a,b):
if b ==
return (-1, 0) if a < 0 else (1, 0) # Le PGCD est positif par définition
g, r=a// b, a%b
u, v = bezout_rec(b, r)
return v, u-q+v

>>> bezout_rec(150, 54), bezout_rec(156, -180)
((41 _11)1 (77 6))
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2.2 Couples de nombres premiers entre eux

Définition 2.3 Nombres premiers entre eux

Soit (a, b) € Z2. On dit que a et b sont premiers entre eux si leurs seuls diviseurs communs sont +1 i.e. siaAb = 1.

11 est souvent plus facile de manipuler deux entiers premiers entre eux que deux entiers quelconques dans les exercices.

WY 1LY Se ramener a des nombres premiers entre eux

Soient (a,b) € Z?etd = aAb. Il existe a’,b’ € Ztelsque a = da’ etb = db’. Alors a’ Ab’ = 1i.e. a’ et b’ sont
premiers entre eux.

Proposition 2.3 Forme irréductible d’un rationnel

Soit ¥ € Q. Alors il existe un unique couple (p,q) € Z X N* tel que r = s etpAgq=1.

Théoreme 2.2 Bézout

Soit (a, b) € Z2. Alors a et b sont premiers entre eux si et seulement si il existe (u, v) € Z2 tel que au + bv = 1.

REMARQUE. Contrairement au premier théoréme de Bézout, on a bien ici une équivalence.

Exemple 2.3

Deux entiers consécutifs sont premiers entre eux. En effet, pourn € Z,1 X (n + 1) + (—1) X n = 1. Le théoréme de
Bézout permet alors d’affirmer que n et n + 1 sont premiers entre eux.

Exercice 2.1

Montrer que (2n + 1) A(2n + 3) = 1 pour tout n € Z.

Définition 2.4 Inversibilité modulo un entier

Soit n € N*. On dit que a € Z est inversible modulo n s’il existe b € Z tel que ab = 1[n].

Proposition 2.4

Soit n € N*. Alors a € Z est inversible modulo 7 si et seulement sia An = 1.

REMARQUE. Si aAn = 1, on peut trouver a ’aide de 1’algorithme d’Euclide étendu un couple (u,v) € Z? tel que
au + nv = 1. On a alors au = 1[n] de sorte que u est un inverse de a modulo .
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\Y (210 Utilisation d’un inverse pour résoudre une congruence

Soit (a,c,n) € Z x N* tel que a An = 1. Pour résoudre 1’équation ax = c[n] d’inconnue x € Z, il suffit de mutiplier par
un inverse b de a modulo n. En effet

ax = c[n] < bax = bc[n] < x = bc[n]

Exemple 2.4

Soit a résoudre 8x = 7[45]. Comme 8 A45 = 1, 8 est inversible modulo 45. A 1’aide de 1’algorithme d’Euclide étendu,
on obtient 17 X 8 — 3 X 45 = 1 donc 17 X 8 = 1[45]. Finalement

8x = 7[45] <> x =17 X 7[45] <> x =119[45] <> x = 29[45]

L’ensemble des solutions est donc 29 + 457.

Théoréeme 2.3 Gauss

Soit (a,b,c) € Z3.Sia | bcetaAb = 1alors a | c.

Proposition 2.5

Soient (a,...,a,) E Z"etn € Z.
1. Siay, ..., a, sont tous premiers avec n, alors le produit a; ... a, est également premier avec n.

2. Siay,...,a, sont premiers entre eux deux a deux et divisent n, alors le produit a, ... a, divise également n.

WY1 Ui Equations diophantiennes ax + by = ¢

On appelle équation diophantienne toute équation a inconnues enti¢res. Pour résoudre 1’équation ax + by = ¢, d’incon-
nues X,y € Z et de coefficients a, b,c € Z, on procéde de la maniere suivante :

Simplification par le pged de a et b On calcule d = a A b. Si d ne divise pas c, alors il n’y a pas de solutions. Sinon on
divise 1’équation par d et on aboutit & I’équation a’x + b’y = ¢’ avec a’ et b’ premiers entre eux.

Recherche d’une solution particuliére Soit il existe une solution particuliere évidente, soit on la trouve en écrivant une
relation de Bézout entre a’ et b'.

Recherche de la solution générale Soit (x,, y,) une solution particuliere. Ainsi (X, ) est solution si et seulement si a’(x—
Xg) + b'(y — ¥p) = 0. Une utilisation judicieuse du théoréme de Gauss permet de conclure que les solutions sont
les couples (xq + kb', yo — ka') avec k décrivant Z.
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2.3 PPCM d’un couple d’entiers

Définition 2.5 PPCM

Soit (a, b) € Z2. On appelle plus petit commun multiple du couple (a, b) tout entier m € Z vérifiant :
(i) m est un multiple communde aetbie.a|metb | m;

(ii) tout multiple commun de a et b est multiple de mi.e. Vu € Z,(a | ueTb | W) = m | w).

REMARQUE. Le ppcm est le plus petit au sens de la divisibilité : si (@, b) € N2, aV b est la borne supérieure de la partie
{a, b} pour la relation d’ordre que constitue la divisibilité.

Proposition 2.6 Existence et «unicité » du PPCM

Soit (a, b) € Z2. 1l existe un unique ppcm positif de (a, b). On le note a V b.
Deux ppcm de (a, b) sont égaux ou opposés.

REMARQUE. On montre en fait que aZ N bZ = (aV b)Z.

WY1 Prouver que deux couples d’entiers ont le méme ppcm

Soient (a, b) et (¢, d) deux couples d’entiers relatifs. Pour montrer que a Ab = ¢ Ad, on peut montrer :

e getbdivisentcvd;

e cetddivisentaVb.

Proposition 2.7 Lien entre PGCD et PPCM

Soit (a, b) € Z2. Alors (a Ab)(aV b) = |ab].

Proposition 2.8 Propriétés du ppcm

Soit (a, b) € Z2.

(i) Pourtoutk € Z, kaVv kb = |k|(aV b).

(ii) Pour tout diviseur commun d # 0 de a et b, % \Y g = aTVb

3 Nombres premiers

3.1 Définition et propriétés

Définition 3.1 Nombre premier, nombre composé

Soit p € N. On dit que p est premier si p # 1 et si ses seuls diviseurs positifs sont 1 et p.
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REMARQUE. 2 est le seul nombre premier pair.

REMARQUE. Deux nombres premiers distincts sont premiers entre eux.

—— Crible d’Eratosthéne

On souhaite déterminer tous les nombres premiers compris entre O et un entier n > 2. On élimine de la liste de ces entiers
ceux qui ne sont pas premiers de la maniére suivante.

* On constate que 0 et 1 ne sont pas premiers.

* On élimine tous les entiers multiples de 2.

On élimine ensuite tous les entiers mutiples de 3. On peut commencer 2 9 = 3 X 3 car 6 = 2 X 3 est un mutiple de
2 donc il a déja été éliminé.

zeN 2

On €élimine tous les multiples de d si d n’a pas déja été identifié comme un nombre non premier. On peut commencer
a d? car les multiples de d précédents ont déja été éliminés.

On arréte dés que d > \/Zn). En effet, un entier possede toujours un diviseur inférieur ou égal a ﬁ

from import sqrt

def eratosthene(n):

premiers = [False, False] + [True] * (n-1)
m = int(sqrt(n))

for d in range(2, m+1):

if premiers[d]:
for i in range(dxd, n+1, d):
premiers[i] = False
return premiers

>>> list(enumerate(eratosthene(20)))

[(0, False), (1, False), (2, True), (3, True), (4, False), (5, True), (6, False), (7,
~ True), (8, False), (9, False), (10, False), (11, True), (12, False), (13, True),
« (14, False), (15, False), (16, False), (17, True), (18, False), (19, True), (20,
~ False)]

Proposition 3.1

Soit p un nombre premier et a € Z. Alors a et p sont premiers entre eux si et seulement si p ne divise pas a.

REMARQUE. En particulier si p est premier et si 0 < a < p, a et p sont premiers entre eux.

ATTENTION! Il est essentiel que p soit premier.
* 4 et 10 ne sont pas premiers entre eux mais 4 ne divise pas 10.

* 1 et 4 sont premiers entre eux mais 1 divise 4.

Proposition 3.2 Lemme d’Euclide

Soient p un nombre premier et (a,b) € Z2. Si p | ab, alors p | aou p | b.
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REMARQUE. Cette proposition se généralise par récurrence au cas de plusieurs entiers.

Théoréme 3.1 Théoréeme de Fermat

Soit p un nombre premier et a € Z. Montrer que aP = a[p].
De plus, si aA p = 1, alors aP~! = 1[p].

Proposition 3.3

Tout entier n > 1 admet un diviseur premier.

Corollaire 3.1

L’ensemble P des nombres premiers est infini.

Corollaire 3.2

Deux entiers sont premiers entre eux si et seulement si ils n’admettent aucun diviseur premier commun.

3.2 Décomposition en facteurs premiers

Théoréme 3.2 Théoréme fondamental de I’arithmétique

Soit n € N*. Il existe une unique famille (v,(n)),ep d’entiers naturels presque nulle (i.e. dont tous les éléments sont nuls
sauf un nombre fini d’entre eux) telle que n = H pUe™.

pe?P
Pour p € P, v,(n) s’appelle la valuation p-adique de n. C’est le plus grand entier k tel que pk divise n.

Exemple 3.1

1200 = 2% X 3 x 5% donc v,(1200) = 4, v3(1200) = 1, v5(1200) = 2 et v,(1200) = 0 pour tout p € P \ {2,3, 5}.

Proposition 3.4 Propriétés de la valuation p-adique

Soit p un nombre premier.
s Y(m,n) € (N*)?, vp(mn) = v,(m) +v,(n).

* V(n,k) € N* X N, v,(n*) = kv,(n).
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Proposition 3.5 Caractérisation de la divisibilité, du pged et du ppcm par les valuations p-adiques

Soit (a, b) € (N*)*.
() alb < Vpe P, vp(a) <vp(b).
(ii) Vp € P, vp(aAb) = min(v,(a),vy(b)).
(iii) Vp € 2, v,(aV b) = max(v,(a),vy(b)).

REMARQUE. Il s’ensuit que :

(1) aAb = H pmi“(vp(a)’vp(b)).
pEP

(ii) avb = [ pxCo@-ve®),
pe?P

REMARQUE. On retrouve la méthode qu’on emploie intuitivement pour déterminer le PGCD et le PPCM de deux nombres.

4 Compléments

4.1 PGCD d’un nombre fini d’entiers

Définition 4.1 PGCD

Soit (ay, ..., a,) € Z". On appelle plus grand commun diviseur (PGCD) de (a4, ..., a,) tout entier d € Z vérifiant :

(i) d estun diviseur commun des a;;

(ii) tout diviseur commun des a; est un diviseur de d.

Proposition 4.1 Existence et «unicité» du pged

Soit (ay, ..., a,) € Z". 1l existe un unique pgcd positif de (ay, ..., a,). On le note a; A ... Aq,.
Deux pged de (ay, ... , @,) sont égaux ou opposeés.

r

REMARQUE. On montre en fait que Z a;Z=(a;A...AQ)Z.
i=1

Proposition 4.2 «Associativité » du PGCD

Soit (a,b,c) € Z3. AlorsaAbAac=(aAb)Ac=aA(bAc).
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WY (S0 Calcul du PGCD

Pour calculer le PGCD d’un nombre fini d’entiers, on peut se ramener a des PGCD de deux entiers. Par exemple
10A12A18 = (10A12)A18 =2A18 =2

ou encore
10A12A18 = 10A(12A18) = 10A6 =2

Proposition 4.3 Propriétés du pged

Soit (a;, ..., a,) € Z".

(i) Pourtout k € Z, (ka;) A ... A(ka,) = |k|(a; A ... Aay).

a a, _ aA..Aa
LA A= 1

(ii) Pour tout diviseur commun d # 0 des q;, vl 4 id]

Théoreme 4.1 Bézout

r
Soit (ay, ..., a,) € Z". 1l existe (uy, ..., u,) € Z" tel que Zuiai =aA...AQ,.
i=1

4.2 Entiers premiers entre eux dans leur ensemble

Définition 4.2 Entiers premiers entre eux dans leur ensemble

Soit (ay, ..., a,) € Z". On dit que ay, ..., a, sont premiers entre eux dans leur ensemble si a; A ... Aa, = 1.

ATTENTION! Si les a; sont premiers entre eux deux a deux, alors ils sont premiers entre eux dans leur ensemble mais la
réciproque est fausse.
Par exemple, 6, 10, 15 sont premiers entre eux dans leur ensemble sans étre premiers entre eux deux a deux.

Théoreme 4.2 Bézout

,
Soit (aq, ...,a,) € Z". Alors a; A ... Aa, = 1 si et seulement si il existe (i, ..., u,) € Z" tel que Y a;u; = 1.
1 r 1 r 1 r q i%i
i=1

Proposition 4.4

Soit (ay, ...,a,) € Z". Alors a; A ... Aa, = 1 si et seulement si il existe ay, ..., @, n’admettent aucun diviseur premier
commun.
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4.3 PPCM d’un nombre fini d’entiers (hors programme)

Définition 4.3 PPCM (hors programme)

Soit (ay, ..., a,) € Z". On appelle plus petit commun multiple (PPCM) de (a,, ..., a,) tout entier m € Z vérifiant :
(i) m est un multiple commun des a; ;

(ii) tout multiple commun des a; est un multiple de m.

Proposition 4.5 Existence et «unicité» du ppcm (hors programme)

Soit (ay, ..., a,) € Z". 1l existe un unique ppcm positif de (a;, ..., a,). Onle note @; V ... V a,.
Deux ppcm de (ay, ... , @,) sont égaux ou opposés.

,
REMARQUE. On montre en fait que ﬂ a;Z =(a; A ... Na,)Z.

i=1

Proposition 4.6 « Associativité » du PPCM (hors programme)

Soit (a,b,c) € Z3. Alorsavbvec=(avb)ac=av(bVvec).

WY Calcul du PPCM

Pour calculer le PPCM d’un nombre fini d’entiers, on peut se ramener a des PPCM de deux entiers. Par exemple
10v12v18 =(10v12)Vv18 = 60V 18 = 180

ou encore

10v12v18 =10Vv(12Vv18) =10V 36 = 180

Proposition 4.7 Propriétés du ppcm (hors programme)

Soit (ay, ...,a,) € Z".
(i) Pourtoutk € Z, (ka;) Vv ... v(ka,) = [k|(a; V ... V a,).
a; a _a;V..va,

(ii) Pour tout diviseur commun d # 0 des a;, vl V..V 4= id]

4.4 Valuations p-adiques (hors programme)

Proposition 4.8 Cas d’un nombre fini d’entiers (hors programme)

Soit (ay, ..., a,) € (N*)".
(i) Vp € 2, vy(a; A ... Aa,) = min(vy(ay), ... vp(a,)).

(ii) Vp € P, vp(a1 V... Va,) = max(v,(ay), ... vp(a,)).
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