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Dérivabilité

1 Dérivabilité en un point, fonction dérivée

1.1 Définitions et premières propriétés

Définition 1.1 Dérivabilité en un point

Soient 𝑓∶ I → ℝ une application et 𝑎 ∈ I. On dit que 𝑓 est dérivable en 𝑎 si le taux d’accroissement de 𝑓 en 𝑎

{
I ∖ {𝑎} ⟶ ℝ

𝑥 ⟼
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎

admet une limite finie en 𝑎. Dans ce cas, cette limite s’appelle le nombre dérivé de 𝑓 en 𝑎 est se note 𝑓′(𝑎), D𝑓(𝑎) ou

encore
𝑑𝑓
𝑑𝑥(𝑎) si la variable de la fonction 𝑓 est notée 𝑥.

Remarque. Cette définition peut aussi se formuler en termes de développement limité. Se reporter à ce chapitre.

Interprétation géométrique

Une fonction dérivable en 𝑎 admet une tangente en 𝑎 et le nombre dérivé en 𝑎 est la pente de cette tangente.

Interprétation cinématique

Si 𝑓(𝑡) désigne l’abscisse d’un point mobile sur un axe en fonction du temps 𝑡, 𝑓′(𝑡) est la vitesse instantanée du point à
l’instant 𝑡.

Proposition 1.1 Dérivabilité implique continuité

Soit 𝑓∶ I → ℝ une fonction dérivable en 𝑎 ∈ I. Alors 𝑓 est continue en 𝑎.

Attention!� La réciproque est totalement fausse comme le montre l’exemple classique de la fonction valeur absolue :
fonction continue en 0 mais non dérivable en 0. Mais il y a pire : il existe des fonctions continues sur ℝ mais dérivables
nulle part.

Définition 1.2 Dérivabilité à gauche, à droite

Soient 𝑓∶ I → ℝ une application et 𝑎 ∈ I.

• On dit que 𝑓 est dérivable à gauche en 𝑎 si le taux d’accroissement de 𝑓 en 𝑎 admet une limite finie à gauche en
𝑎. Dans ce cas, cette limite s’appelle le nombre dérivé à gauche de 𝑓 en 𝑎 est se note 𝑓′𝑔(𝑎).

• On dit que 𝑓 est dérivable à droite en 𝑎 si le taux d’accroissement de 𝑓 en 𝑎 admet une limite finie à droite en 𝑎.
Dans ce cas, cette limite s’appelle le nombre dérivé à droite de 𝑓 en 𝑎 est se note 𝑓′𝑑(𝑎).
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Interprétation géométrique

Une fonction 𝑓 dérivable à gauche (resp. à droite) en 𝑎 admet une demi-tangente à gauche (resp. à droite) en 𝑎 et 𝑓′𝑔(𝑎)
(resp. 𝑓′𝑑(𝑎)) est la pente de cette demi-tangente.

Proposition 1.2

Soient 𝑓∶ I → ℝ une application et 𝑎 ∈ ̊I. Alors 𝑓 est dérivable en 𝑎 si et seulement si 𝑓 est dérivable à gauche et à
droite en 𝑎 avec 𝑓′𝑔(𝑎) = 𝑓′𝑑(𝑎).
Dans ce cas 𝑓′(𝑎) = 𝑓′𝑔(𝑎) = 𝑓′𝑑(𝑎).

Exemple 1.1

La fonction valeur absolue n’est pas dérivable en 0.

La fonction 𝑓∶ {
ℝ ⟶ ℝ

𝑥 ⟼ {
ln(1 + 𝑥) si 𝑥 ≥ 0
sin𝑥 si 𝑥 < 0

est dérivable en 0 et 𝑓′(0) = 1.

Proposition 1.3 Dérivabilité sur un intervalle

Soit 𝑓∶ I → ℝ une application. On dit que 𝑓 est dérivable sur I si 𝑓 est dérivable en tout point de I. L’application
𝑥 ↦ 𝑓′(𝑥) notée 𝑓′ est appelée fonction dérivée de 𝑓 ou plus simplement dérivée de 𝑓.
On note 𝒟(I, ℝ) l’ensemble des fonctions dérivables sur I.

1.2 Opérations sur la dérivabilité

Proposition 1.4 Opérations algébriques et dérivée en un point

Soient 𝑓∶ I → ℝ et 𝑔∶ I → ℝ. Soit 𝑎 ∈ I. On suppose 𝑓 et 𝑔 dérivables en 𝑎.

Somme 𝑓 + 𝑔 est dérivable en 𝑎 et (𝑓 + 𝑔)′(𝑎) = 𝑓′(𝑎) + 𝑔′(𝑎).

Produit 𝑓𝑔 est dérivable en 𝑎 et (𝑓𝑔)′(𝑎) = 𝑓′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎).

Inverse Si 𝑓(𝑎) ≠ 0, 1𝑓 est dérivable en 𝑎 et ( 1𝑓)
′
(𝑎) = −

𝑓′(𝑎)
𝑓(𝑎)2

.

Quotient Si 𝑔(𝑎) ≠ 0,
𝑓
𝑔 est dérivable en 𝑎 et (

𝑓
𝑔 )

′
(𝑎) =

𝑓′(𝑎)𝑔(𝑎) − 𝑓(𝑎)𝑔′(𝑎)
𝑔(𝑎)2

.
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Proposition 1.5 Opérations algébriques et dérivée sur un intervalle

Soient 𝑓∶ I → ℝ et 𝑔∶ I → ℝ. On suppose 𝑓 et 𝑔 dérivables sur I.

Somme 𝑓 + 𝑔 est dérivable sur I et (𝑓 + 𝑔)′ = 𝑓′ + 𝑔′.

Produit 𝑓𝑔 est dérivable sur I et (𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′.

Inverse Si 𝑓 ne s’annule pas sur I, 1𝑓 est dérivable sur I et ( 1𝑓)
′
= −

𝑓′

𝑓2 .

Quotient Si 𝑔 ne s’annule pas sur I,
𝑓
𝑔 est dérivable sur I et (

𝑓
𝑔 )

′
=
𝑓′𝑔 − 𝑓𝑔′

𝑔2 .

Remarque. On en déduit que 𝒟(I, ℝ) est un ℝ-espace vectoriel.

Proposition 1.6 Dérivabilité et composition

Soit 𝑓∶ I → ℝ et 𝑔∶ J → ℝ deux applications. Soit 𝑎 ∈ I. On suppose 𝑓(I) ⊂ J.

Dérivabilité en un point Si 𝑓 est dérivable en 𝑎 et 𝑔 est dérivable en 𝑓(𝑎), alors 𝑔 ∘ 𝑓 est dérivable en 𝑎 et (𝑔 ∘ 𝑓)′(𝑎) =
𝑓′(𝑎)(𝑔′(𝑓(𝑎)).

Dérivabilité sur un intervalle Si 𝑓 est dérivable sur I et 𝑔 est dérivable sur J, alors 𝑔 ∘ 𝑓 est dérivable sur I et (𝑔 ∘ 𝑓)′ =
(𝑔′ ∘ 𝑓)𝑓′.

Exemple 1.2

La fonction 𝑥 ↦ √𝑥 arcsin𝑥 est dérivable sur ] − 1, 1[∖{0}. En effet,

• arcsin est dérivable sur ] − 1, 1[ ainsi que 𝑥 ↦ 𝑥 donc, par produit, 𝑥 ↦ 𝑥 arcsin𝑥 est dérivable sur ] − 1, 1[ ;

• 𝑥 ↦ 𝑥 arcsin𝑥 est positive ou nulle sur ] − 1, 1[ et ne s’y annule qu’en 0, donc 𝑥 ↦ 𝑥 arcsin𝑥 est dérivable sur
] − 1, 1[∖{0} à valeurs dans ℝ∗

+ ;

• 𝑥 ↦ √𝑥 est dérivable sur ℝ∗
+ donc, par composition, 𝑥 ↦ √𝑥 arcsin𝑥 est dérivable sur ] − 1, 1[∖{0}.

Proposition 1.7 Dérivabilité et application réciproque

Soit 𝑓∶ I → J une application bijective dérivable en 𝑎 ∈ I. Alors 𝑓−1 est dérivable en 𝑏 = 𝑓(𝑎) si et seulement
si 𝑓′(𝑎) ≠ 0 et, dans ce cas :

(𝑓−1)′(𝑏) = 1
𝑓′(𝑎)

= 1
𝑓′(𝑓−1(𝑏))

Proposition 1.8 Dérivabilité et application réciproque

Soit 𝑓∶ I → J une application bijective dérivable sur I. Si 𝑓′ ne s’annule pas sur I, alors 𝑓−1 est dérivable sur J et :

(𝑓−1)′ = 1
𝑓′ ∘ 𝑓−1
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Remarque. On retrouve facilement cette formule en dérivant la relation 𝑓 ∘ 𝑓−1 = IdJ.

2 Etude globale des fonctions dérivables

2.1 Extrémum local et théorème de Rolle

Définition 2.1 Extremum local

Soit 𝑓∶ I → ℝ et 𝑎 ∈ ̊I.

• On dit que 𝑓 admet un maximum local en 𝑎 si 𝑓 est majorée par 𝑓(𝑎) au voisinage de 𝑎.

• On dit que 𝑓 admet un minimum local en 𝑎 si 𝑓 est minorée par 𝑓(𝑎) au voisinage de 𝑎.

On dit que 𝑓 admet un extremum local en 𝑎 si 𝑓 admet un maximum ou un minimum local en 𝑎.

Le théorème suivant est d’une importance capitale puisque tous les résultats de ce paragraphe vont en découler.

Théorème 2.1 Extremum local et dérivée

Soit 𝑓∶ I → ℝ et 𝑎 ∈ ̊I. Si 𝑓 est dérivable en 𝑎 et admet un extremum local en 𝑎, alors 𝑓′(𝑎) = 0.

Attention!� La réciproque est fausse : considérer la fonction 𝑥 ↦ 𝑥3 en 0.
Il est essentiel que 𝑎 ne soit pas une borne de I.

Théorème 2.2 Théorème de Rolle

Soit 𝑓 une fonction continue sur [𝑎, 𝑏] et dérivable sur ]𝑎, 𝑏[ telle que 𝑓(𝑎) = 𝑓(𝑏). Alors il existe 𝑐 ∈]𝑎, 𝑏[ tel que
𝑓′(𝑐) = 0.

Interprétation graphique

Le théorème de Rolle provient du fait qu’une telle fonction 𝑓 admet forcément au moins un extremum local sur [𝑎, 𝑏]
donc une tangente horizontale, ce qui se conçoit aisément à l’aide d’un dessin.

Attention!�

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏

Il n’y a pas unicité de 𝑐 La dérivabilité sur tout l’in-
tervalle est essentielle

La continuité même au bord
également

Et bien évidemment la
condition 𝑓(𝑎) = 𝑓(𝑏)
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Interprétation cinématique

On suppose que 𝑓(𝑡) désigne l’abscisse d’un point mobile sur un axe en fonction du temps 𝑡. L’hypothèse 𝑓(𝑎) = 𝑓(𝑏)
veut juste dire que le point mobile par d’un point donné au temps 𝑡 = 𝑎 et revient à ce point au temps 𝑡 = 𝑏. Le théorème
de Rolle nous dit que la vitesse de ce point mobile s’annule à un instant 𝑡 = 𝑐 compris entre 𝑡 = 𝑎 et 𝑡 = 𝑏 (il fait demi-tour
pour revenir à son point de départ).

Exercice 2.1 ★ Bricole Rolle

Soit 𝑓 ∶ [0,∞[⟶ ℝ dérivable admettant 𝑓(0) comme limite en +∞. Prouver l’existence d’un nombre réel 𝑐 tel que
𝑓′(𝑐) = 0.

2.2 Accroissements finis
Un corollaire du théorème de Rolle est le théorème suivant.

Théorème 2.3 Egalité des accroissements finis

Soit 𝑓 une fonction continue sur [𝑎, 𝑏] et dérivable sur ]𝑎, 𝑏[. Alors il existe 𝑐 ∈]𝑎, 𝑏[ tel que 𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎 .

Remarque. Le théorème de l’égalité (et de l’inégalité) des accroissements finis nous dit que, si on a un renseignement
sur la dérivée, on peut en déduire un renseignement sur la fonction.

Interprétation graphique

𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎 est la pente de la corde reliant les points d’abscisses 𝑎 et 𝑏 i.e. le taux d’accroissement de 𝑓 entre 𝑎 et 𝑏.

L’égalité des accroissements finis dit simplement qu’il existe un point de [𝑎, 𝑏] en lequel la tangente a même pente que la
corde.

Remarque. L’égalité des accroissements finis est juste une généralisation du théorème de Rolle comme le montre le
schéma suivant.

𝑎 𝑏 𝑎 𝑏
Situation du théorème de Rolle Situation de l’égalité des accroissements finis

Enfin les remarques faites sur la nécessité de la dérivabilité sur tout l’intervalle et sur la continuité aux bords pour le
théorème de Rolle sont encore d’actualité pour l’égalité des accroissements finis.
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Théorème 2.4 Inégalité des accroissements finis

Soit 𝑓 une fonction continue sur [𝑎, 𝑏] et dérivable sur ]𝑎, 𝑏[.

• Si 𝑓′ est minorée par 𝑚 sur ]𝑎, 𝑏[, alors 𝑚(𝑏 − 𝑎) ≤ 𝑓(𝑏) − 𝑓(𝑎).

• Si 𝑓′ est majorée par M sur ]𝑎, 𝑏[, alors 𝑓(𝑏) − 𝑓(𝑎) ≤ M(𝑏 − 𝑎).

• Si |𝑓′| est majorée par K ∈ ℝ+ sur ]𝑎, 𝑏[, alors |𝑓(𝑏) − 𝑓(𝑎)| ≤ K|𝑏 − 𝑎|.

Attention!� Les versions sans valeurs absolues ne sont valables que pour 𝑎 ≤ 𝑏. La version avec valeur absolue est vraie
pour 𝑎 ≤ 𝑏 e 𝑏 ≤ 𝑎.

Interprétation cinématique

L’inégalité des accroissements finis nous dit juste qu’un point mobile dont la vitesse instantanée est toujours comprise
entre 𝑣min et 𝑣max entre deux instants 𝑡0 et 𝑡1 parcourt entre ces deux instants une distance comprise entre 𝑣min(𝑡1 − 𝑡0) et
𝑣max(𝑡1 − 𝑡0).

Exercice 2.2 ★

En utilisant le théorème des accroissement finis, montrer les inégalités suivantes :

1. ∀𝑥 ∈ ℝ, | sin(𝑥)| ⩽ |𝑥| ;

2. ∀𝑥 ⩾ 0, 0 ⩽ ln(1 + 𝑥) ⩽ 𝑥.

Exercice 2.3

Soit 𝑓 une fonction continue sur un intervalle I admettant une primitive F sur I. Soit 𝑎 ∈ I.
Si 𝑓(𝑥) =

𝑥→𝑎
𝑜((𝑥 − 𝑎)𝑛) alors F(𝑥) =

𝑥→𝑎
F(𝑎) + 𝑜((𝑥 − 𝑎)𝑛+1).

Corollaire 2.1 Dérivation et fonctions lipschitziennes

Soit 𝑓∶ I → ℝ une application. Si |𝑓′| est majorée par K ∈ ℝ+ sur I, alors 𝑓 est K-lipschitzienne sur I.

Exercice 2.4 ★ Cas typique lipschitzien

Soit 𝑓 ∶ [𝑎, 𝑏]⟶ ℝ de classe 𝒞1. Prouver que 𝑓 est lipschitzienne.

Exemple 2.1

• sin est 1-lipschitzienne (sur ℝ).

• arctan est 1-lipschitzienne (sur ℝ).

• th est 1-lipschitzienne (sur ℝ).
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Méthode Accroissements finis et suites récurrentes

On considère une suite (𝑢𝑛) vérifiant la relation de récurrence 𝑢𝑛+1 = 𝑓(𝑢𝑛).

• On recherche un intervalle I stable par 𝑓 contenant 𝑢0.

• On recherche un point fixe ℓ de 𝑓 sur I.

• On majore |𝑓′| sur I par une constante K < 1.

• On établit par récurrence que |𝑢𝑛 − ℓ| ≤ K𝑛|𝑢0 − ℓ| et on conclut que 𝑢𝑛 ⟶
𝑛→+∞

ℓ.

Remarque. Cette méthode permet également d’obtenir une approximation d’un point fixe 𝑙 de 𝑓 si la valeur exacte de
celui-ci est inconnu. En effet, 𝑢𝑛 est une valeur approchée de 𝑙 et on peut évaluer la précision de cette approximation en
majorant l’erreur [𝑢𝑛 − 𝑙| par K𝑛|𝑢0 − 𝑙|.
La décroissance deK𝑛|𝑢0−𝑙| est exponentielle, ce qui veut dire que l’on obtient rapidement de bonnes valeurs approchées
du point fixe 𝑙. Néanmoins, on verra que, sous certaines conditions, on peut faire encore mieux grâce à l’algorithme de
Newton.

Exercice 2.5

Soit 𝑎 un point fixe d’une fonction 𝑓. On suppose que 𝑓 est dérivable en 𝑎 et que |𝑓′(𝑎)| > 1. Montrer qu’une suite (𝑢𝑛)
définie par la relation de récurrence 𝑢𝑛+1 = 𝑓(𝑢𝑛) ne peut converger vers 𝑎 que si elle est stationnaire en 𝑎.

Proposition 2.1 Limite de la dérivée

Soient 𝑎 ∈ I et 𝑓∶ I → ℝ dérivable sur I ∖ {𝑎}. Si 𝑓′ admet une limite 𝑙 ∈ ℝ en 𝑎, alors lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎 = 𝑙.

Remarque. En particulier, si 𝑙 ∈ ℝ, 𝑓 est dérivable en 𝑎, 𝑓′(𝑎) = 𝑙 et 𝑓′ est continue en 𝑎.

Exemple 2.2

La fonction 𝑥 ↦ arcsin(1 − 𝑥4) est de classe 𝒞1 sur [−1, 1].

2.3 Constance, monotonie et dérivabilité

Théorème 2.5 Constance, monotonie et dérivabilité

Soit 𝑓 une fonction continue sur un intervalle I et dérivable sur ̊I

(i) 𝑓 est croissante sur I si et seulement si 𝑓′ ≥ 0 sur ̊I.

(ii) 𝑓 est décroissante sur I si et seulement si 𝑓′ ≤ 0 sur ̊I.

(iii) 𝑓 est constante sur I si et seulement si 𝑓′ est nulle sur ̊I.

Attention!� Le fait que I soit un intervalle est essentiel. Rappelez-vous de la démonstration de l’identité arctan𝑥 +

arctan 1𝑥 = ±π2 .
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Théorème 2.6 Stricte monotonie et dérivabilité

Soit 𝑓 une fonction continue sur un intervalle I et dérivable sur ̊I.

1. Si 𝑓′ > 0 sur ̊I, alors 𝑓 est strictement croissante sur I.

2. Si 𝑓′ < 0 sur ̊I, alors 𝑓 est strictement décroissante sur I.

Attention!� La réciproque est fausse comme le montre l’exemple de la fonction 𝑥 ↦ 𝑥3.

Le résultat suivant permet néanmoins d’apporter des précisions.

Théorème 2.7 Stricte monotonie et dérivabilité

Soit 𝑓 une fonction continue sur un intervalle I et dérivable sur ̊I. Alors 𝑓 est strictement monotone sur I si et seulement
si les deux conditions suivantes sont réunies :

1. 𝑓′ est de signe constant sur ̊I ;

2. l’ensemble des zéros de 𝑓′ ne contient pas d’intervalle non réduit à un point.

En pratique, on utilise surtout le corollaire suivant.

Corollaire 2.2

Soit 𝑓 une fonction continue sur un intervalle I et dérivable sur ̊I. Si 𝑓′ est de signe constant sur I et si elle ne s’annule
qu’une un nombre fini de points, alors 𝑓 est strictement monotone sur I.

3 Dérivées successives

3.1 Définition

Notation 3.1 Dérivée 𝑛ème

Si 𝑓∶ I → ℝ est 𝑛 fois dérivable, on note 𝑓(𝑛) sa dérivée 𝑛ème. Par convention, 𝑓(0) = 𝑓.

Remarque. On a donc (𝑓(𝑛))
′
= 𝑓(𝑛+1).

Définition 3.1 Fonctions de classe 𝒞𝑛

Soient 𝑓∶ I → ℝ et 𝑛 ∈ ℕ. On dit que 𝑓 est de classe 𝒞𝑛 si 𝑓 est 𝑛 fois dérivable sur I et si 𝑓(𝑛) est continue sur I.
On dit que 𝑓 est de classe 𝒞∞ si 𝑓 est indéfiniment dérivable sur I.
On note 𝒞𝑛(I, ℝ) ou 𝒞(I) (resp. 𝒞∞(I, ℝ) ou 𝒞∞(I)) l’ensemble des fonctions de classe 𝒞𝑛 (resp. 𝒞∞) sur I.

Attention!� Etre 𝑘 fois dérivable et être de classe 𝒞𝑘 sont deux choses différentes.
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Remarque. Pour tout 𝑘 ∈ ℕ, 𝒞𝑘(I, ℝ) est un ℝ-espace vectoriel ainsi que 𝒞∞(I, ℝ).

Exemple 3.1

sin et cos sont de classe 𝒞∞ sur ℝ et pour tout 𝑛 ∈ ℕ et tout 𝑥 ∈ ℝ,

sin(𝑛)(𝑥) = sin (𝑥 + 𝑛π2 ) cos(𝑛)(𝑥) = cos (𝑥 + 𝑛π2 )

Exercice 3.1 Rolle généralisé

Soit 𝑓 ∈ 𝒞𝑘(I, ℝ). On suppose que 𝑓 s’annule 𝑘 + 1 fois sur I. Montrer que 𝑓(𝑘) s’annule au moins une fois sur I.

3.2 Opérations sur les dérivées successives

Proposition 3.1 Opérations algébriques

Soient 𝑓∶ I → ℝ et 𝑔∶ I → ℝ. On suppose 𝑓 et 𝑔 𝑘 fois dérivables (resp. de classe 𝒞𝑘) sur I.

Somme 𝑓 + 𝑔 est 𝑘 fois dérivable (resp. de classe 𝒞𝑘) sur I et (𝑓 + 𝑔)(𝑘) = 𝑓(𝑘) + 𝑔(𝑘).

Produit 𝑓𝑔 est 𝑘 fois dérivable (resp. de classe 𝒞𝑘) sur I et

(𝑓𝑔)(𝑘) =
𝑘
∑
𝑝=0

(
𝑘
𝑝
)𝑓(𝑝)𝑔(𝑘−𝑝) (formule de Leibniz)

Inverse Si 𝑓 ne s’annule pas sur I, 1𝑓 est 𝑘 fois dérivable (resp. de classe 𝒞𝑘) sur I.

Quotient Si 𝑔 ne s’annule pas sur I,
𝑓
𝑔 est 𝑘 fois dérivable (resp. de classe 𝒞𝑘) sur I.

On a des résultats analogues quand 𝑓 et 𝑔 sont de classe 𝒞∞.

Remarque. Remarquer la grande similarité de la formule de Leibniz et de celle du binôme de Newton.

Remarque. On en déduit que les 𝒞𝑘(I, ℝ) et 𝒞∞(I, ℝ) sont des ℝ-espaces vectoriels.

Proposition 3.2 Composition

Soit 𝑓∶ I → ℝ et 𝑔∶ J → ℝ deux applications de classe 𝒞𝑘 avec 𝑓(I) ⊂ J. Alors 𝑔 ∘ 𝑓 est de classe 𝒞𝑘 sur I.

Proposition 3.3 Inversion

Soit 𝑓∶ I → J une bijection de classe 𝒞𝑘 avec 𝑘 ≥ 1. Si 𝑓′ ne s’annule pas sur I, alors 𝑓−1 est de classe 𝒞𝑘 sur J.
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3.3 Prolongement 𝒞𝑘

Théorème 3.1 Prolongement

Soient 𝑘 ∈ ℕ ∪ {∞}, 𝑎 ∈ I et 𝑓 une application de classe 𝒞𝑘 sur I ∖ {𝑎}. Si pour tout 𝑗 ∈ ⟦0, 𝑘⟧, 𝑓(𝑗) admet une limite
finie en 𝑎, alors l’application 𝑓 admet un prolongement de classe 𝒞𝑘 sur I.
Plus précisément, 𝑓 est prolongeable par continuité en 𝑎 et ce prolongement 𝑔 est de classe 𝒞𝑘 sur I. De plus, 𝑔(𝑗)(𝑎) =
lim
𝑎
𝑓(𝑗) pour tout 𝑗 ∈ ⟦0, 𝑘⟧.

Exercice 3.2

Montrer que la fonction 𝑓∶ 𝑥 ↦ {
0 si 𝑥 ≤ 0

𝑒−
1
𝑥 si 𝑥 > 0

est de classe 𝒞∞ sur ℝ.

3.4 Formules de Taylor

Proposition 3.4 Formule de Taylor avec reste intégral

Soit 𝑓 une fonction de classe 𝒞𝑛+1 sur un intervalle I. Soient 𝑎, 𝑏 ∈ I. Alors

𝑓(𝑏) =
𝑛
∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! (𝑏 − 𝑎)𝑘 +∫

𝑏

𝑎

(𝑏 − 𝑡)𝑛
𝑛! 𝑓(𝑛+1)(𝑡) d𝑡

Exemple 3.2

∀𝑥 ∈ [−π, π], cos𝑥 ≥ 1 − 𝑥2
2

Exercice 3.3 ★★ Formule de Taylor-Lagrange

Soit 𝑓 une fonction de classe C𝑛 sur [𝑎, 𝑏] et 𝑛 + 1 fois dérivable sur ]𝑎, 𝑏[. Montrer qu’il existe 𝑐 ∈]𝑎, 𝑏[ tel que

𝑓(𝑏) =
𝑛
∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! (𝑏 − 𝑎)𝑘 +

𝑓(𝑛+1)(𝑐)
(𝑛 + 1)!

(𝑏 − 𝑎)𝑛+1

On appliquera le théorème de Rolle à la fonction φ définie par

φ(𝑥) = 𝑓(𝑏) −
𝑛
∑
𝑘=0

𝑓(𝑘)(𝑥)
𝑘! (𝑏 − 𝑥)𝑘 + A(𝑏 − 𝑥)𝑛+1

(𝑛 + 1)!

avec une constante A bien choisie.

Proposition 3.5 Inégalité de Taylor-Lagrange

Soit 𝑓 une fonction de classe 𝒞𝑛+1 sur un intervalle I. Soient 𝑎, 𝑏 ∈ I. Alors

|
|
|
𝑓(𝑏) −

𝑛
∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! (𝑏 − 𝑎)𝑘

|
|
|
≤ M

|𝑏 − 𝑎|𝑛+1

(𝑛 + 1)!

où M est un majorant de |𝑓(𝑛+1)| sur [𝑎, 𝑏] ou [𝑏, 𝑎].
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Remarque. Un tel M existe car 𝑓(𝑛+1) étant continue sur [𝑎, 𝑏], elle y est bornée.
En pratique, on prend donc souvent M = sup

[𝑎,𝑏]
|𝑓(𝑛+1)| = max

[𝑎,𝑏]
|𝑓(𝑛+1)|.

Exemple 3.3

La suite de terme général S𝑛 =
𝑛
∑
𝑘=0

𝑥𝑘
𝑘! converge vers 𝑒𝑥.

Théorème 3.2 Formule de Taylor-Young

Soit 𝑓 une fonction de classe 𝒞𝑛 sur un intervalle I. Soit 𝑎 ∈ I. Alors 𝑓 admet un développement limité d’ordre 𝑛 au
voisinage de 𝑎 donné par :

𝑓(𝑥) =
𝑥→𝑎

𝑛
∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘 + 𝑜((𝑥 − 𝑎)𝑛)

Remarque. On rappelle que ce développement limité peut aussi s’écrire :

𝑓(𝑎 + ℎ) =
ℎ→0

𝑛
∑
𝑘=0

𝑓(𝑘)(𝑎)
𝑘! ℎ𝑘 + 𝑜(ℎ𝑛)

4 Dérivabilité des fonctions à valeurs complexes
La notion de dérivabilité s’étend sans problème aux fonctions de ℝ dans ℂ tout comme les notions de dérivées successives

et de fonctions de classe 𝒞𝑘. Les opérations algébriques sur les dérivées restent aussi valables.

Proposition 4.1

Soient 𝑓∶ I → ℂ et 𝑎 ∈ I. Les propositions suivantes sont équivalentes :

(i) 𝑓 est dérivable en 𝑎 ;

(ii) Re(𝑓) et Im(𝑓) sont dérivables en 𝑎.

De même, les assertions :

(i) 𝑓 est dérivable sur I ;

(ii) Re(𝑓) et Im(𝑓) sont dérivables sur I.

Ces notions s’étendent aussi aux fonctions 𝑘 fois dérivables et aux fonctions de class 𝒞𝑘.

Exemple 4.1

La dérivée de 𝑡 ↦ 𝑒𝑖ᵆ(𝑡) est 𝑡 ↦ 𝑖𝑢′(𝑡)𝑒𝑖ᵆ(𝑡).

Exercice 4.1 ★★

Calculer la dérivée 𝑛-ième de la fonction de ℝ dans ℝ définie par ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑒√3𝑥 sin(𝑥).

Ce qui n’est plus valable dans le cas complexe :
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• théorème de Rolle ;

• égalité des accroissements finis ;

• caractérisation de la monotonie par la dérivée (la notion de monotonie n’a plus de sens).

Exemple 4.2

Par exemple, en ce qui concerne le théorème de Rolle, la fonction 𝑓∶ 𝑡 ↦ 𝑒𝑖𝑡 est continue sur [0, 2π], dérivable sur
]0, 2π[ et vérifie 𝑓(0) = 𝑓(2π). Pourtant sa dérivée ne s’annule jamais. Ceci peut aussi se comprendre d’un point de vue
cinématique si on identifie ℂ au plan : un point mobile qui se déplace dans le plan peut revenir à son point de départ sans
que sa vitesse s’annule.

Ce qui reste vrai dans le cas complexe :

• la caractérisation de la constance par la nullité de la dérivée ;

• les formules de Taylor (hormis la formule d’égalité de Taylor-Lagrange vu en exercice).

Proposition 4.2 Inégalité des accroissements finis

Soit 𝑓∶ [𝑎, 𝑏] → ℂ de classe 𝒞1. Alors

|𝑓(𝑏) − 𝑓(𝑎)| ≤ max
[𝑎,𝑏]

|𝑓′| ⋅ |𝑏 − 𝑎|
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