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DERIVABILITE

1 Dérivabilité en un point, fonction dérivée

1.1 Définitions et premieres propriétés

Définition 1.1 Dérivabilité en un point

Soient f: I — R une application et a € I. On dit que f est dérivable en a si le taux d’accroissement de f en a

\{gg — R
f&x) — f(a)

X —a

X

admet une limite finie en a. Dans ce cas, cette limite s’appelle le nombre dérivé de f en a est se note f'(a), Df(a) ou

d
encore %(a) si la variable de la fonction f est notée x.

REMARQUE. Cette définition peut aussi se formuler en termes de développement limité. Se reporter a ce chapitre.

— Interprétation géométrique

Une fonction dérivable en a admet une tangente en a et le nombre dérivé en a est la pente de cette tangente. J
N

Interprétation cinématique

Si f(t) désigne 1’abscisse d’un point mobile sur un axe en fonction du temps ¢, f'(t) est la vitesse instantanée du point a
I’instant ¢.

Proposition 1.1 Dérivabilité implique continuité
Soit f: I — R une fonction dérivable en a € I. Alors f est continue en a.
ATTENTION! La réciproque est totalement fausse comme le montre I’exemple classique de la fonction valeur absolue :

fonction continue en 0 mais non dérivable en 0. Mais il y a pire : il existe des fonctions continues sur R mais dérivables
nulle part.

Définition 1.2 Dérivabilité a gauche, a droite

Soient f: I - R une applicationeta € L.

* On dit que f est dérivable a gauche en a si le taux d’accroissement de f en a admet une limite finie & gauche en
a. Dans ce cas, cette limite s’appelle le nombre dérivé a gauche de f en a est se note fg(a).

* On dit que f est dérivable a droite en a si le taux d’accroissement de f en a admet une limite finie & droite en a.
Dans ce cas, cette limite s’appelle le nombre dérivé a droite de f en a est se note f;(a).
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Interprétation géométrique

Une fonction f dérivable a gauche (resp. a droite) en a admet une demi-tangente a gauche (resp. a droite) en a et fgf (a)
(resp. f;(a)) est la pente de cette demi-tangente.

Proposition 1.2

Soient f: I — R une application et a € i. Alors f est dérivable en a si et seulement si f est dérivable 2 gauche et &
droite en a avec fy(a) = f;(a).
Dans ce cas f'(a) = fz(a) = fi(a).

Exemple 1.1

La fonction valeur absolue n’est pas dérivable en 0.
R — R

La fonction f: { = In(1+x)six>0  estdérivableenOet f'(0) = 1.
sinxsix <0

Proposition 1.3 Dérivabilité sur un intervalle
Soit f: I — R une application. On dit que f est dérivable sur I si f est dérivable en tout point de I. L’application

x = f'(x) notée f' est appelée fonction dérivée de f ou plus simplement dérivée de f.
On note D(I, R) ’ensemble des fonctions dérivables sur I.

1.2 Opérations sur la dérivabilité

Proposition 1.4 Opérations algébriques et dérivée en un point

Soient f: I - Retg: I - R. Soit a € I. On suppose f et g dérivables en a.
Somme f + g est dérivable en a et (f + g)'(a) = f'(a) + g'(a).
Produit fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Inverse Si f(a) # 0, f est dérivable en a et ( f) (a) = J]: (Egz
f J'(@g(@) - f(@)g'(@)

Quotient Si g(a) # 0, 5 est dérivable en a et <f> (a) = (@)
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Proposition 1.5 Opérations algébriques et dérivée sur un intervalle

Soient f: I - Retg: I - R. On suppose f et g dérivables sur I.
Somme f + gestdérivablesurlet(f+g) =f" +g'.

Produit fgest dérivable sur et (fg) = f'g+ fg'.

1
Inverse Si f ne s’annule pas sur I, — est dérivable sur I et (

f

1
f
Quotient Si g ne s’annule pas sur I, ép est dérivable sur I et (
REMARQUE. On en déduit que D(I, R) est un R-espace vectoriel.

Proposition 1.6 Dérivabilité et composition

Soit f: I - Retg: J — R deux applications. Soit a € I. On suppose f(I) C J.

Dérivabilité en un point Si f est dérivable en a et g est dérivable en f(a), alors g o f est dérivable en a et (go )’ (a) =

(@' (f(a).

Dérivabilité sur un intervalle Si f est dérivable sur I et g est dérivable sur J, alors g o f est dérivable sur I et (go f)' =

& NS

Exemple 1.2

La fonction x +— v/ x arcsin x est dérivable sur | — 1, 1[\{0}. En effet,
e arcsin est dérivable sur | — 1, 1[ ainsi que x +— x donc, par produit, X — X arcsin x est dérivable sur | — 1, 1[;

* X — Xxarcsin x est positive ou nulle sur | — 1, 1[ et ne s’y annule qu’en 0, donc x — X arcsin x est dérivable sur
1 —1,1[\{0} a valeurs dans R% ;

* Xx > 1/x est dérivable sur R* donc, par composition, x — V/ x arcsin x est dérivable sur | — 1, 1[\{0}.

Proposition 1.7 Dérivabilité et application réciproque

Soit f: I — J une application bijective dérivable en a € 1. Alors f~! est dérivable en b = f(a) si et seulement

si f'(a) # 0 et, dans ce cas :
1

-1y — 1 —
O = 7 = 7o)

Proposition 1.8 Dérivabilité et application réciproque

Soit f : T — J une application bijective dérivable sur I. Si f’ ne s’annule pas sur I, alors f~! est dérivable sur J et :

-1\ 1
(f )_f,of_l

http://1lgarcin.github.io 3


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

REMARQUE. On retrouve facilement cette formule en dérivant la relation f o f~! = Id;.

2 Etude globale des fonctions dérivables

2.1 Extrémum local et théoréme de Rolle

Définition 2.1 Extremum local

Soit f: I—» Retael.
* On dit que f admet un maximum local en a si f est majorée par f(a) au voisinage de a.

 On dit que f admet un minimum local en a si f est minorée par f(a) au voisinage de a.

On dit que f admet un extremum local en a si f admet un maximum ou un minimum local en a.

Le théoréme suivant est d’une importance capitale puisque tous les résultats de ce paragraphe vont en découler.

Théoréme 2.1 Extremum local et dérivée

Soit f: I - Reta € 1. Si f est dérivable en a et admet un extremum local en a, alors f'(a) = 0.

@ ATTENTION ! La réciproque est fausse : considérer la fonction x — x> en 0.
Il est essentiel que a ne soit pas une borne de 1.

Théoreme 2.2 Théoréeme de Rolle

Soit f une fonction continue sur [a, b] et dérivable sur ]a, b[ telle que f(a) = f(b). Alors il existe ¢ €]a, b[ tel que

'(c) = 0.

—— Interprétation graphique

Le théoréme de Rolle provient du fait qu’une telle fonction f admet forcément au moins un extremum local sur [a, b]
donc une tangente horizontale, ce qui se congoit aisément a 1’aide d’un dessin.

@ ATTENTION !

i
I I |
| ! I
I ! I
I I |
I ! |
| |
. . 1
a a b

s s La dérivabilité sur tout I’in- La continuité méme au bord Et bien évidemment la
Il n’y a pas unicité de ¢ . < .,
tervalle est essentielle également condition f(a) = f(b)
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— Interprétation cinématique

On suppose que f(t) désigne 1’abscisse d’un point mobile sur un axe en fonction du temps t. L'hypothése f(a) = f(b)
veut juste dire que le point mobile par d’un point donné au temps t = a et revient a ce point au temps ¢t = b. Le théoréme
de Rolle nous dit que la vitesse de ce point mobile s’annule a un instant ¢ = ¢ compris entre t = aett = b (il fait demi-tour
pour revenir a son point de départ).

Exercice 2.1 % Bricole Rolle

Soit f : [0, 0] — R dérivable admettant f(0) comme limite en +o0. Prouver 1’existence d’un nombre réel c tel que

f'(c) = 0.

2.2 Accroissements finis

Un corollaire du théoréme de Rolle est le théoréme suivant.

Théoréme 2.3 Egalité des accroissements finis

£ = f(@)

Soit f une fonction continue sur [a, b] et dérivable sur ]a, b[. Alors il existe ¢ €]a, b tel que f'(c) = -

REMARQUE. Le théoreme de 1’égalité (et de 1’inégalité€) des accroissements finis nous dit que, si on a un renseignement
sur la dérivée, on peut en déduire un renseignement sur la fonction.

— Interprétation graphique

b) - f(a
M est la pente de la corde reliant les points d’abscisses a et b i.e. le taux d’accroissement de f entre a et b.

L’ égalité des accroissements finis dit simplement qu’il existe un point de [a, b] en lequel la tangente a méme pente que la
L corde.

REMARQUE. Légalité des accroissements finis est juste une généralisation du théoréme de Rolle comme le montre le
schéma suivant.

Situation du théoreme de Rolle Situation de 1’égalité des accroissements finis

Enfin les remarques faites sur la nécessité de la dérivabilité sur tout I’intervalle et sur la continuité aux bords pour le
théoréme de Rolle sont encore d’actualité pour 1’égalité des accroissements finis.
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Théoréme 2.4 Inégalité des accroissements finis

Soit f une fonction continue sur [a, b] et dérivable sur ]a, b[.
e Si f’ est minorée par m sur |a, b[, alors m(b — a) < f(b) — f(a).
e Si f’ est majorée par M sur |a, b[, alors f(b) — f(a) < M(b — a).

e Si |f’| est majorée par K € R, sur ]a, b[, alors | f(b) — f(a)| < K|b —al.

ATTENTION! Les versions sans valeurs absolues ne sont valables que pour a < b. La version avec valeur absolue est vraie
poura<beb<a.

— Interprétation cinématique

L’inégalité des accroissements finis nous dit juste qu’un point mobile dont la vitesse instantanée est toujours comprise
entre U, et U,y €ntre deux instants ¢, et t; parcourt entre ces deux instants une distance comprise entre v,,;,,(t; — tg) et

Umax(tl - tO)-

Exercice 2.2 %

En utilisant le théoréme des accroissement finis, montrer les inégalités suivantes :
1. Vx € R, |sin(x)| < |x|;

2.Vx 20, 0<In(1+x)<x.

Exercice 2.3

Soit f une fonction continue sur un intervalle I admettant une primitive F sur I. Soit a € 1.
Si f(x) = o((x —a)?) alors F(x) = F(a) + o((x — a)™*).
2320 x—a

Corollaire 2.1 Dérivation et fonctions lipschitziennes

Soit f: I — R une application. Si |f’| est majorée par K € R, sur L, alors f est K-lipschitzienne sur I.

Exercice 2.4 % Cas typique lipschitzien

Soit f : [a,b] — R de classe . Prouver que f est lipschitzienne.

Exemple 2.1

* sin est 1-lipschitzienne (sur R).

e arctan est 1-lipschitzienne (sur R).

¢ th est 1-lipschitzienne (sur R).
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WY (510G Y Accroissements finis et suites récurrentes

On considere une suite (u,) vérifiant la relation de récurrence u, ., = f(u,).
* On recherche un intervalle I stable par f contenant .
* On recherche un point fixe € de f sur L.
* On majore |f'| sur I par une constante K < 1.

* On établit par récurrence que |u,, — €| < K"|uy — €| et on conclut que u,, — ¢.

n—+oo

REMARQUE. Cette méthode permet également d’obtenir une approximation d’un point fixe I de f si la valeur exacte de
celui-ci est inconnu. En effet, u,, est une valeur approchée de [ et on peut évaluer la précision de cette approximation en
majorant I’erreur [u,, — I| par K"|uy — I|.

La décroissance de K™|u, —I| est exponentielle, ce qui veut dire que 1’on obtient rapidement de bonnes valeurs approchées
du point fixe I. Néanmoins, on verra que, sous certaines conditions, on peut faire encore mieux grice a 1’algorithme de
Newton.

Exercice 2.5

Soit a un point fixe d’une fonction f. On suppose que f est dérivable en a et que |f'(a)| > 1. Montrer qu’ une suite (u;,)
définie par la relation de récurrence u,; = f(u,) ne peut converger vers a que si elle est stationnaire en a.

Proposition 2.1 Limite de la dérivée

Soienta € Iet f: I — R dérivable sur I \ {a}. Si f’ admet une limite | € R en a, alors lim w =
xX—a -

REMARQUE. En particulier, si I € R, f est dérivable en a, f'(a) = l et f’ est continue en a.

Exemple 2.2

La fonction x — arcsin(1 — x*) est de classe C! sur [—1,1].

2.3 Constance, monotonie et dérivabilité

Théoréme 2.5 Constance, monotonie et dérivabilité

Soit f une fonction continue sur un intervalle I et dérivable sur i
(i) f est croissante sur I si et seulement si f’ > 0 sur I.
(ii) f est décroissante sur I si et seulement si f’ < O sur I.

(iii) f est constante sur I si et seulement si f’ est nulle sur I.

ATTENTION! Le fait que I soit un intervalle est essentiel. Rappelez-vous de la démonstration de I’identité arctan x +
s

1
arctan — = +=—.
b 2
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Théoreme 2.6 Stricte monotonie et dérivabilité

Soit f une fonction continue sur un intervalle I et dérivable sur i.
1. Si f' > Osur{, alors f est strictement croissante sur 1.

2. Si f’ < 0sur ], alors f est strictement décroissante sur I.

ATTENTION ! La réciproque est fausse comme le montre 1’exemple de la fonction x — x3.

Le résultat suivant permet néanmoins d’apporter des précisions.

Théoreme 2.7 Stricte monotonie et dérivabilité

Soit f une fonction continue sur un intervalle I et dérivable sur I. Alors f est strictement monotone sur I si et seulement
si les deux conditions suivantes sont réunies :

1. f’ est de signe constant sur f;

2. ’ensemble des zéros de f’ ne contient pas d’intervalle non réduit a un point.
En pratique, on utilise surtout le corollaire suivant.

Corollaire 2.2

Soit f une fonction continue sur un intervalle I et dérivable sur I. Si f’ est de signe constant sur I et si elle ne s annule
qu’une un nombre fini de points, alors f est strictement monotone sur I.

3 Dérivées successives

3.1 Définition

-

Notation 3.1 Dérivée n®me

Si f: I — R est n fois dérivable, on note f( sa dérivée n®™. Par convention, f(® = f.

REMARQUE. On a donc (f(”))/ = fln+),

Définition 3.1 Fonctions de classe C"

Soient f: I — Retn € N. On dit que f est de classe " si f est n fois dérivable sur I et si f() est continue sur 1.
On dit que f est de classe C* si f est indéfiniment dérivable sur 1.
On note C™(I, R) ou C(I) (resp. €= (I, R) ou C*(I)) I’ensemble des fonctions de classe C" (resp. C*) sur L.

ArteEnTION ! Etre k fois dérivable et étre de classe C¥ sont deux choses différentes.
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REMARQUE. Pour tout k € N, €¥(I, R) est un R-espace vectoriel ainsi que C*(I, R).

Exemple 3.1

sin et cos sont de classe C* sur R et pour tout n € N et tout x € R,

sin™(x) = sin (x + ng) cos(™(x) = cos (x + ng)

Exercice 3.1 Rolle généralisé

Soit f € C¥(I,R). On suppose que f s’annule k + 1 fois sur I. Montrer que f*) s’annule au moins une fois sur I.

3.2 Opérations sur les dérivées successives

Proposition 3.1 Opérations algébriques

Soient f: I - Retg: I = R. On suppose f et g k fois dérivables (resp. de classe C¥) sur 1.
Somme f + g est k fois dérivable (resp. de classe C¥) sur I et (f + g)®) = fK) 4 gk,

Produit fg est k fois dérivable (resp. de classe €) sur I et

k

k
(fo) = Z (p) f@)gk=p) (formule de Leibniz)
p=0

1
Inverse Si f ne s’annule pas sur I, = est k fois dérivable (resp. de classe €¥) sur L.

f

Quotient Si g ne s’annule pas sur I, ]é est k fois dérivable (resp. de classe ) sur I.

On a des résultats analogues quand f et g sont de classe C*.
‘ REMARQUE. Remarquer la grande similarité de la formule de Leibniz et de celle du bindme de Newton.

REMARQUE. On en déduit que les C¥(I, R) et @(I, R) sont des R-espaces vectoriels.

Proposition 3.2 Composition

Soit f: I - Retg: J — R deux applications de classe C* avec f(I) C J. Alors g o f est de classe C¥ sur I.

Proposition 3.3 Inversion

Soit f : I — J une bijection de classe C* avec k > 1. Si f’ ne s’annule pas sur I, alors f~! est de classe ¥ sur J.
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3.3 Prolongement C¥

Théoréme 3.1 Prolongement

Soient k € N U {o0}, a € 1 et f une application de classe € sur I \ {a}. Si pour tout j € [0, k], f) admet une limite
finie en a, alors Iapplication f admet un prolongement de classe C¥ sur I.

Plus précisément, f est prolongeable par continuité en a et ce prolongement g est de classe C¥ sur I. De plus, g(j )(a) =
li;nf(j) pour tout j € [0, k].

Exercice 3.2

0 six <0
Montrer que la fonction f: x — est de classe C® sur R.

1
e x six>0

3.4 Formules de Taylor

Proposition 3.4 Formule de Taylor avec reste intégral

Soit f une fonction de classe C™*! sur un intervalle I. Soient a, b € 1. Alors

fb) = Zf Dby / @D pnengey ar

Exemple 3.2

2
Vx € [-m, ], cosx > 1— =

Exercice 3.3 %% Formule de Taylor-Lagrange

Soit f une fonction de classe C" sur [a, b] et n + 1 fois dérivable sur ]a, b[. Montrer qu’il existe ¢ €]a, b[ tel que

fi (a) S -
fb) = Z (b-a)f + 9 !

On appliquera le théoréme de Rolle a la fonction ¢ définie par

f (x><b_ of 4 A=

®(x) = f(b) - Z i D

avec une constante A bien choisie.

Proposition 3.5 Inégalité de Taylor-Lagrange

Soit f une fonction de classe C "+1 gur un intervalle I. Soient a, b € 1. Alors

_ q|n+l
£ - Zf @, - o smbot

ol M est un majorant de | f*+V| sur [a, b] ou [b, a].

http://1lgarcin.github.io 10


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

REMARQUE. Un tel M existe car f (n+1) &tant continue sur [a, b], elle y est bornée.

En pratique, on prend donc souvent M = sup |f("+D)| = 1[112}3)]( |fn+D)),
[a’b] a,

Exemple 3.3

n
xk

La suite de terme général S,, = F SOTVeIge vers er.
k=0

Théoréme 3.2 Formule de Taylor-Young

Soit f une fonction de classe C" sur un intervalle I. Soit a € 1. Alors f admet un développement limité d’ordre n au
voisinage de a donné par :

(9]
70 = 3 O a4 oG- ay
k=0 :

REMARQUE. On rappelle que ce développement limité peut aussi s’écrire :

e
fla+h) = ¥ ! k,(a)hk + o(h")
k=0 :

4 Dérivabilité des fonctions a valeurs complexes

La notion de dérivabilité s’étend sans probleme aux fonctions de R dans C tout comme les notions de dérivées successives
et de fonctions de classe C¥. Les opérations algébriques sur les dérivées restent aussi valables.

Proposition 4.1

Soient f: I - Ceta € I. Les propositions suivantes sont équivalentes :
(1) f est dérivableen a;
(ii) Re(f) et Im(f) sont dérivables en a.
De méme, les assertions :
(i) f est dérivable surI;
(ii) Re(f) et Im(f) sont dérivables sur L.

Ces notions s’étendent aussi aux fonctions k fois dérivables et aux fonctions de class C¥.

Exemple 4.1

La dérivée de t > e™(® est t — i/ ()e™®).

Exercice 4.1 %%

Calculer la dérivée n-ieme de la fonction de R dans R définie par Vx € R, f(x) = eV3x sin(x).

Ce qui n’est plus valable dans le cas complexe :
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¢ théoreme de Rolle;
o égalité des accroissements finis ;

e caractérisation de la monotonie par la dérivée (la notion de monotonie n’a plus de sens).

Exemple 4.2

Par exemple, en ce qui concerne le théoréme de Rolle, la fonction f: t — eit est continue sur [0,27t], dérivable sur
10, 27t et vérifie f(0) = f(2m). Pourtant sa dérivée ne s’annule jamais. Ceci peut aussi se comprendre d’un point de vue
cinématique si on identifie C au plan : un point mobile qui se déplace dans le plan peut revenir a son point de départ sans
que sa vitesse s’annule.

Ce qui reste vrai dans le cas complexe :
e la caractérisation de la constance par la nullité de la dérivée;

¢ les formules de Taylor (hormis la formule d’égalité de Taylor-Lagrange vu en exercice).

Proposition 4.2 Inégalité des accroissements finis
Soit f : [a,b] — C de classe C. Alors

If(b) — f(a)] < e [f'| - 1b—al
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