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DETERMINANTS

Dans tout ce chapitre, n désigne un entier naturel non nul.

1 Groupe symétrique

1.1 Permutation

Définition 1.1 Permutation, groupe symétrique

On appelle permutation d’un ensemble E toute bijection de E dans lui-méme. L’ensemble des permutations de E se note
S(E). (S(E), o) est un groupe appelé groupe symétrique de E.

Définition 1.2 Groupe symétrique de degré n

Si n € N*, on note S,, = S([1, n]). (Sy, ©) est appelé le groupe symétrique de degré n.

Notation 1.1

On représente généralement une permutation de [1, n] par un tableau dont la premiére ligne est consituée par les entiers
de 1 a n rangés par ordre croissant et dont la seconde ligne est constituée de leurs images respectives. Par exemple,

12345 3 .
représente la permutation ¢ de Ss telle que :
25314
o(1) =2,0(2) = 5,0(3) = 3,0(4) = 1,0(5) = 4.
N J

Proposition 1.1

Le cardinal de S,, est n!.

1.2 Transpositions et cycles

Définition 1.3 Cycle

Soit p € [2, n]). On appelle p-cycle ou cycle de longueur p toute permutation circulaire de p éléments de [1, 7] i.e. toute
permutation o telle qu’il existe p entiers distincts a;, a, ..., a, de [1, n] vérifiant :

Vi € [1, pl, o(a;) = ai41, o(ap) = a;

Un tel cycle est noté (ay, ay, ..., a,). Uensemble {ay, ..., a,} est appelé le support du cycle.
Un 2-cycle est appelé une transposition.

REMARQUE. Le méme cycle peut s’écrire de plusieurs maniéres. Par exemple, (1,2,3) = (2,3,1) = (3,1, 2).
REMARQUE. Si ¢ est un p-cycle, alors ¢ = Id; ;7. Notamment, si T est une transposition, = Idpy,pp iee. Tl=1

REMARQUE. S, est non commutatif dés que n > 3. Par exemple, (1,2,3) o (1,2) # (1,2) o (1,2, 3).
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Proposition 1.2

Deux cycles a supports disjoints commutent.

Théoreme 1.1

Toute permutation peut s’écrire comme une composée commutative de cycles de supports disjoints. De plus, cette écriture
est unique a I’ordre des cycles pres.

Exemple 1.1

123456
526143

) =(1,5,4)0(3,6) =(3,6)0(1,5,4)

Exercice 1.1

Ecrire sous la forme usuelle (tableau) et sous forme de composée de cycles disjoints la permutation (2, 3)o(4, 3, 1)o(5, 2, 3).

Théoréeme 1.2

Toute permutation peut s’écrire comme une composée de transpositions.

REMARQUE. On dit que le groupe S,, est engendré par les transpositions.

@ ArTeENTION ! Cette décomposition n’est pas unique. Par exemple, (1,2,3) = (1,2) o (2,3) = (3,1) o (1, 2).

Exemple 1.2

Décomposition d’un p-cycle en une composée de transpositions :

(ar,ay, ..., ap) = (a1,a3) © (az,a3) o ... o (ap_1,ap)

Exercice 1.2

Enumérer tous les éléments de S;.

1.3 Signature

e N

Théoréme 1.3 Signature

11 existe un unique morphisme non trivial (non constant) € du groupe (S, o) sur le groupe ({—1, 1}, X). On ’appelle la
signature.
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Proposition 1.3
Pour toute transposition T € S,,, e(t) = —1.
REMARQUE. Une permutation de signature +1 est dite paire et une permutation de signature —1 est dite impaire. L’ensemble

des permutations paires de S,,, ¢’est-a-dire le noyau de la sognature, forme un sous-groupe de S,, appelé groupe alterné de
degré n et noté A,,.

Exercice 1.3

!
Montrer que pour n > 2, le cardinal de A,, est %

Exercice 1.4

Montrer que A, est engendré par les 3-cycles.

Proposition 1.4 Signature d’un cycle

La signature d’un p-cycle est (—1)P~!. En particulier, la signature d’une transposition est —1.

REMARQUE. Il suffit donc de savoir décomposer une permutation en une composée de cycles disjoints pour calculer sa signa-
ture.

Exemple 1.3 Calcul de signature

12345
Soit o = .Alors 0 = (1,3,5) 0 (2,4) donc €(0) = (=1)? x (—1) = —1.
(34521> ( )o(2,4) (0) =(-1)* x(-1)

— Inversions

La signature d’une permutation peut se calculer via le nombre d’inversions. Soit ¢ € S,,. On appelle inversion de o toute
paire {i, j} d’éléments de [1, n] telle que i — j et (i) —o(j) soient de signes opposés. Si on note I(g) le nombre d’inversions
de o, alors £(c) = (—1)X9),

N

2 Applications multilinéaires

Définition 2.1 Application multilinéaire

Soient Eq, E,, ..., E,, et F des K-espaces vectoriels. On dit que f : E; XE, X --- XE,, — F est une application n-linéaire
si elle est linéaire par rapport a chacune de ses variables.
Si F = K, on dit que f est une forme n-linéaire.

REMARQUE. L'ensemble des applications n-linéaires de E; X --- X E,, dans F est un K-espace vectoriel. Plus précisément,
c’est un sous-espace vectoriel de FE1%-XEn

REMARQUE. Une application bilinéaire est une application 2-linéaire.
Une application trilinéaire est une application 3-linéaire.

REMARQUE. Si f: E; X --- X E,, — F est une application n-linéaire, elle est nulle sur tout n-uplet comportant le vecteur nul.
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Exemple 2.1

En géométrie :
* Dans le plan et ’espace, le produit scalaire est une forme bilinéaire.
* Dans le plan, le déterminant est une forme bilinéaire.
* Dans I’espace, le déterminant est une forme trilinéaire.

» Dans I’espace, le produit vectoriel est une application bilinéaire.

Exemple 2.2

En algebre :
* Le produit est une application bilinéaire de [K? dans K.
* La multiplication matricielle est une application bilin€aire de M, ,(IK) X M}, 4(I) dans M, 4(K).

¢ La composition d’applications linéaires est une application bilinéaire de £(E, F) X £(F, G) dans £(E, G).

Exemple 2.3

En analyse :

* Le produit de fonctions d’un ensemble X 2 valeurs dans KK est une application bilinéaire de (KX)2 dans KX,
C°([a,b],R)> — R

b
(Fog) — f FOg(t)dt

* Lapplication est une forme bilinéaire.

A partir de maintenant, on considere que E; = E, = --- = E,,.

Définition 2.2 Application multilinéaire symétrique, anti-symétrique, alternée

Soit f: E™ — F une application n-linéaire.

(i) On dit que f est symétrique si :
Vo €Sy, Y(X1,X; ..., Xn) € E", f(X5(1)s Xo(2)s -+ » Xa(m)) = f (X1, X2, -0 5 X)
(ii) On dit que f est antisymétrique si :
Vo €Sy, Y(X1,X; ..., Xp) € E", f(X5(1)s Xo(2)s - » Xa(n)) = €(0) f(X15 X35 o » Xp)

(iii) On dit que f est alternée si :

V(x1, X5 ..., X,) € E", V(, j) € [L,n]?, (i # jerX; = %) = f(X1, %3, ..., %,) = Op

REMARQUE. L'ensemble des applications n-linéaires symétriques (resp. antisymétriques, alternées) est un sous-espace vecto-
riel de I’espace vectoriel des applications n-linéaires de E"” dans F.
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Proposition 2.1

Une application multilinéaire alternée est antisymétrique. La réciproque est vraie si K = R ou K = C.

REMARQUE. En ce qui nous concerne, il y aura donc équivalence parfaite ente «alternée» et «antisymétrique».

Exemple 2.4

¢ Le produit scalaire est une forme bilinéaire symétrique.
* Le produit vectoriel est une application bilinéaire antisymétrique ou alternée.

¢ Le déterminant dans le plan est une forme bilinéaire antisymétrique ou alternée.

* Le déterminant dans 1’espace est une forme trilinéaire antisymétrique ou alternée.

Proposition 2.2

Soit f: E" — F une application n-linéaire antisymétrique (ou alternée). Soit (uy, ..., u,,) une famille liée de E. Alors
f(uy, ..., u,) = Og.

3 Déterminant d’une famille de vecteurs

Définition 3.1 Déterminant d’une famille de vecteurs dans une base

Soient E un K-espace vectoriel de dimension n et B = (e, ..., €,,) une base de E. On définit une application detg : E" —
K appelée déterminant dans la base B par

n
V(xy, ..., x,) € E", detg(xy,...,X,) = Z E(G)Hez‘;(i)(xi)

ceSy, i=1

n
ReEMARQUE. Pour tout j € [1, n]], notons (ij, ,xn,j) € K" les coordonnées de X; dans la base B i.e. Xj = Z X;, jé;. Alors
Jj=1

n
detg(xy, ..., Xp) = Z (o) ch,(i),,-
i=1

ceSy,

Lemme 3.1

Soient E un K-espace vectoriel de dimension n, B une base de E et ¢ : E" — K une forme n-linéaire alternée. Alors
¢ = ¢(B) detp.

Théoréme 3.1
Soient E un K-espace vectoriel de dimension n et B une base de E. Alors detg est I’'unique forme n-linéaire alternée

valant 1 en B.
L’ensemble des formes n-linéaires alternées sur E™ est vect(detg).
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Proposition 3.1 Changement de base

Soit E un K-espace vectoriel de dimension n. Soit B et B’ deux bases de E. Alors

detz/ = detz/(ﬂ) det3

Proposition 3.2 Caractérisation des bases

Soit E un K-espace vectoriel de dimension n. Soit B = (ey, €,, ..., €,) une base de E. Soit (uy, ..., u,) une famille de
vecteurs de E. Alors (uy, ..., u,) est une base de E si et seulement si detg(uy, ..., u,) # 0.

REMARQUE. Réciproquement, la famille (uy, ..., u,,) est liée si et seulement si detg(uy, ..., u,) = 0.

Proposition 3.3 Pivot de Gauss

Le déterminant d’une famille de vecteurs est :
» multiplié par —1 lorsqu’on échange deux vecteurs de la famille;
* inchangé lorsqu’on ajoute & un vecteur une combinaison linéaire des autres vecteurs ;

* multiplié par o si on multiplie un vecteur de la famille par a € K.

— Interprétation géométrique d’un déterminant d’ordre 2

Si U et U sont deux vecteurs de R2, alors la valeur absolue de leur détermi-
nant dans la base canonique de R? est I’aire du parallélogramme porté par ces
v vecteurs.
N J
— Interprétation géométrique d’un déterminant d’ordre 3
Si u, U, w sont trois vecteurs de R3, alors la valeur absolue de leur déterminant
dans la base canonique de R? est le volume du parallélépipede porté par ces
vecteurs.
u
N
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Définition 3.2 Orientation d’un R-espace vectoriel

Soit E un R-espace vectoriel. Soient B, et B, deux bases de E. On dit que B, a la méme orientation que 3, si detg, (B,) >
0.

La relation binaire «avoir la méme orientation que» est une relation d’équivalence sur I’ensemble des bases de E pour
laquelle il existe deux classes d’équivalence.

De maniere arbitraire, on convient que 1’'une des classes d’équivalence sera formée des bases dites directes tandis que
’autre sera formée des bases dites indirectes.

——— Orienter un R-espace vectoriel

Pour orienter concrétement un R-espace vectoriel, on choisit une base de référence B,. Toutes les base de méme orien-
tation que B, seront dites directes tandis que les autres seront dites indirectes.
Il n’existe que deux orientations possibles d’un méme espace vectoriel.

AtTENTION! Lorientation n’a de sens que pour les espaces vectoriels réels puisqu’il y est question de signe d’un déter-
minant.

4 Déterminant d’un endomorphisme

Définition 4.1 Déterminant d’un endomorphisme

Soit E un K-espace vectoriel de dimension n. Soient B une base de E et f € L(E). Alors le scalaire detg(f(3B)) ne dépend
pas de la base B choisie. On I’appelle le déterminant de f noté det(f).

Exemple 4.1

det(Idg) = 1.

Proposition 4.1 Propriétés du déterminant d’un endomorphisme

Soit E un K-espace vectoriel de dimension n. Soient B une base de E et & une famille de n vecteurs de E. Soit A € K.
Soient enfin f,g € L(E).

(@) detg(f(F)) = det(f) detg(F);
(i) det(f o g) = det(f) det(g);
(iii) f est un automorphisme de E si et seulement si det(f) # 0 et dans ce cas, det(f~!) = det(f)!.

@iv) det(Af) = A" det(f)

Exercice 4.1

Calculer le déterminant d’une symétrie, d’un projecteur.

5 Déterminant d’une matrice carrée

5.1 Définition et premieres propriétés
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Définition 5.1

Soit A € M, (K). On appelle déterminant de A, noté det(A), le déterminant des vecteurs colonnes de A dans la base
canonique de M, ; (K) ou, de mani¢re équivalente, le déterminant de I’endomorphisme de K" canoniquement associé a
A. Il s’ensuit que si A = (a; )<, j<n

det(A) = Z S(G)Hac(i),i

cES, i=1
( 7
Notation 5.1
al,l al,z al,j Cll’n

az,l az’z cee (1271- cee a27n

Soit A = (a;,j)1<j,j<n- Le déterminant de A peut se noter

aiqx Qip a;,j Ain
ap1 App . an,] Apn
N J
Proposition 5.1 Lien entre les différentes notions de déterminant
Soit E un espace vectoriel de dimension n et B une base de E.
(i) Soit F une famille de n vecteurs de E. Alors detg(F) = det(matg(F)).
(ii) Soit f € L(E). Alors det(f) = det(matg(f)).
— Déterminant d’ordre 2 : regle du y
ap. a»
§ = 01,1022 — 02,1012
az1 az,2
N J
—— Déterminant d’ordre 3 : reégle de Sarrus
al,l al,z a1’3 — —— T
+ a1,102,2033 + a,103,201,3 + a3,101,2023
a1 Qzp A3 | =
- 43,10201,3 - 2,101,233 - 41,103,023
—— —— ——
Q31 43p 433
- J
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Exercice 5.1

Montrer que le déterminant d’une matrice a coefficients dans Z est un entier.

Proposition 5.2 Propriétés du déterminant d’une matrice carrée
Soit A € K. Soient A, B € £L(E).
(i) det(AB) = det(A) det(B);
(ii) A est inversible si et seulement si det(A) # 0 et dans ce cas, det(A™!) = det(A)™!;

(iii) det(AA) = A" det(A);

ArTENTION! Le déterminant n’est pas linéaire ! En général, det(AA + uB) # Adet(A) + pdet(B).

Proposition 5.3 Déterminant d’une transposée

Soit A = (ai’j)lsi,jﬁn (S Mn(K) Alors

Z &(o) H Qi o) = Z &(o) H As(i),i

cES, i=1 cES, i=1

Autrement dit, det(AT) = det(A).

Exercice 5.2

Montrer qu’une matrice antisymétrique de taille impaire est non inversible.

— Factorisation

Le déterminant d’une matrice est linéaire en chaque colonne (par définition) ou ligne (puisque le déterminant d’une
matrice est égal au déterminant de sa transposée). Ceci permet de factoriser des déterminants.

Exemple 5.1
A 20 1 20 1 2 0 1 20
20 -1 3|=A| 2 -13 20 —A 3A|=A| 2 -1 3
A 21 -1 2 1 -1 2 1 -1 2 1

5.2 Opérations sur les lignes et les colonnes d’une matrice

L'objectif est de se ramener au calcul du déterminant d’une matrice triangulaire dont on verra qu’il est simple a calculer.
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Proposition 5.4
Notons (C;);<;j<y, la famille des vecteurs colonnes d’une matrice A. Soient i, j € [1,n] avec i # j. Soit a € K.
(i) Lopération C; «> C; multiplie le déterminant par —1.
(i) L'opération C; « C; + aC; laisse le déterminant invariant.
(iii) Lopération C; « aC; multiplie le déterminant par .
De méme, si on note (L;);<;<y, la famille des vecteurs lignes d’une matrice A :
(i) Lopération L; < L; multiplie le déterminant par —1.
(i) L'opération L; « L; + al; laisse le déterminant invariant.

(iii) Lopération L; « aL; multiplie le déterminant par c.

5.3 Développement par rapport a une ligne ou une colonne

Définition 5.2 Mineur, cofacteur

Soient A = (ai’j)lsi,an (S Mn(K) et l,] (S [[1, n]].
* On appelle mineur de q; ; le déterminant A; ; de la matrice obtenue en supprimant la i®m ligne et la j*™ colonne
de A.

* On appelle cofacteur de a; ; le scalaire (—1)"*/A, ;.

Proposition 5.5

Soit A = (ai’j)lsi,an (S Mn(K)

* Développement par rapport a une ligne : soit i € [1,n];

n
det(A) = Z(—l)“’jai,in,j
j=1

* Développement par rapport 4 une colonne : soit j € [1,71];

n
det(A) = D (=D)*ay ;A
i=1
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Exemple 5.2
En développant par rapport a la premiére colonne :
147
58 4 7 4 7
258|=+1 =2 3 =0
69 69 58
3609
En développant par rapport a la deuxieme ligne :
147
4 7 17 14
258|=-2 +5 -8 =0
69 39 36
3609

REMARQUE. Cette technique de calcul de déterminant révele tout son intérét lorsque 1’on développe par rapport a une ligne
ou une colonne qui comporte beaucoup de zéros.

Corollaire 5.1 Déterminant d’une matrice triangulaire

Le déterminant d’une matrice triangulaire (supérieure ou inférieure) est égal au produit de ses coefficients diagonaux.

REMARQUE. On retrouve le fait qu'une matrice triangulaire est inversible si et seulement si ses coefficients diagonaux sont
non nuls.
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VY210 Calcul du déterminant par pivot de Gauss et développement

On a tout intérét a développer par rapport a une ligne ou une colonne comportant beaucoup de zéros. On utilise donc le
pivot de Gauss pour faire apparaitre des zéros.

1 2 -2 3 1 2 -2 3
-3 2 4 1 08 —210| 2 < Ltk
= L3 « L3—2L1
2 2 1 0 0-2 5 -6 L, « L,—1L,
1 -2 -3 -4 0 -4 -1-7
8§ =2 10
=|—-2 5 —6 |endéveloppant par rapport a la premiére colonne

—4 -1 -7

—4 -2 10
—2| 1 5 —6|en factorisant par —2 la premiere colonne

2 -1 -7

1 5 -6
=2|-4 2 10| Ly oL,
2 -1 —7
1 5 -6
=2|0 18 -14
0 —11 5

L2 « Lz + 4L1
L3 <« L3 - 2L1

18 —14
=2 s en développant par rapport a la premiere colonne

=2(18 x 5—14 x 11) = —128

Exercice 5.3

abb
Calculde |b a b |.
bba

Proposition 5.6 Déterminants de Vandermonde

Soit (xg, ..., X,,) € C"*1,

1 5% 3% oo 595
1 x x3 ... xt
2 n|—
1 x5, x5 ... X8|= || (% — x;)
S . o<i<j<n
1 x, x5 ... x}

Kn [X] SN Kn+1

P — (P(xp),..., P(x,))
de K,[X] et K"*, On retrouve ainsi le fait que ® est bijective si et seulement si les x; sont distincts deux a deux (polyndmes
interpolateurs de Lagrange).

REMARQUE. Il s’agit du déterminant de la matrice de @ : { dans les bases canoniques
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Proposition 5.7 Déterminants par blocs

Le déterminant d’une matrice triangulaire par blocs (et a fortiori diagonale par blocs) est le produit des déterminants
des blocs diagonaux.
A|B

Définition 5.3 Comatrice

@ ATTENTION ! En général

5.4 Comatrice

Soit A € M,,(KK). On appelle comatrice de A la matrice des cofacteurs de A i.e. com(A) = ((—1)”in, N<i,j<n-

Proposition 5.8 Formule de la comatrice

Soit A € M,,(K). Alors com(A)TA = Acom(A)T = det(A)I,,.

En particulier, si A est inversible : A~ = com(A)T.

1
det(A)

REMARQUE. Cette formule est souvent inutilisable en pratique. Néanmoins pour n = 2, il convient de retenir la formule
suivante.

. ac . . L _ 1 d —c
SiA= b d est inversible (i.e. si ad — bc # 0) alors A~ = .

ad—bc\ _p ¢

Exercice 5.4

On note GL,(Z) I’ensemble des matrices inversibles de M,,(Z) dont I’inverse est également dans M, (Z).
Soit A € M,,(Z). Montrer que A € GL,(Z) < det(A) = *1.

6 Systémes linéaires (hors programme)

Proposition 6.1 Formules de Cramer

Soient A € GL,(IK) et B € K". Pour j € [1, 1], on note A; la matrice obtenue en remplagant la j*™ colonne de A par B.
X1

Lunique solution X =| : |[dusysttme AX = B est donnée par :
xn

det A

det A

vje[Ln], xj=

@ ATTENTION! Ce résultat a un intérét purement théorique. Il est hors de question d’utiliser cette méthode pour résoudre
en pratique un systeme linéaire deés que n > 4. En effet, cela nécessiterait le calcul de n + 1 déterminants de taille n, ce
qui est bien plus long que notre bon vieux pivot de Gauss !

Néanmoins, pour n = 2, on peut retenir les formules suivantes.
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— Résolution d’un systéme de deux équations a deux inconnues

+by =
Le systeme axToy=e admet une unique solution si et seulement si ad — bc # 0 et dans ce cas :
ex+dy=f
e b‘ ae
v fd _ed—fb _ cf _af—ce
" la bp| ad—bc y= a b| ad—bc
c d‘ c d‘
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