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Déterminants

Dans tout ce chapitre, 𝑛 désigne un entier naturel non nul.

1 Groupe symétrique

1.1 Permutation

Définition 1.1 Permutation, groupe symétrique

On appelle permutation d’un ensemble E toute bijection de E dans lui-même. L’ensemble des permutations de E se note
S(E). (S(E), ∘) est un groupe appelé groupe symétrique de E.

Définition 1.2 Groupe symétrique de degré 𝑛

Si 𝑛 ∈ ℕ∗, on note S𝑛 = S(J1, 𝑛K). (S𝑛, ∘) est appelé le groupe symétrique de degré 𝑛.

Notation 1.1

On représente généralement une permutation de J1, 𝑛K par un tableau dont la première ligne est consituée par les entiers
de 1 à 𝑛 rangés par ordre croissant et dont la seconde ligne est constituée de leurs images respectives. Par exemple,

(
1 2 3 4 5
2 5 3 1 4

) représente la permutation σ de S5 telle que :

σ(1) = 2, σ(2) = 5, σ(3) = 3, σ(4) = 1, σ(5) = 4.

Proposition 1.1

Le cardinal de S𝑛 est 𝑛!.

1.2 Transpositions et cycles

Définition 1.3 Cycle

Soit 𝑝 ∈ J2, 𝑛K. On appelle 𝑝-cycle ou cycle de longueur 𝑝 toute permutation circulaire de 𝑝 éléments de J1, 𝑛K i.e. toute
permutation σ telle qu’il existe 𝑝 entiers distincts 𝑎1, 𝑎2…,𝑎𝑝 de J1, 𝑛K vérifiant :

∀𝑖 ∈ J1, 𝑝K, σ(𝑎𝑖) = 𝑎𝑖+1, σ(𝑎𝑝) = 𝑎1

Un tel cycle est noté (𝑎1, 𝑎2,… , 𝑎𝑝). L’ensemble {𝑎1,… , 𝑎𝑝} est appelé le support du cycle.
Un 2-cycle est appelé une transposition.

Remarque. Le même cycle peut s’écrire de plusieurs manières. Par exemple, (1, 2, 3) = (2, 3, 1) = (3, 1, 2).

Remarque. Si 𝑐 est un 𝑝-cycle, alors 𝑐𝑝 = IdJ1,𝑛K. Notamment, si τ est une transposition, τ2 = IdJ1,𝑛K i.e. τ−1 = τ.

Remarque. S𝑛 est non commutatif dès que 𝑛 ≥ 3. Par exemple, (1, 2, 3) ∘ (1, 2) ≠ (1, 2) ∘ (1, 2, 3).
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Proposition 1.2

Deux cycles à supports disjoints commutent.

Théorème 1.1

Toute permutation peut s’écrire comme une composée commutative de cycles de supports disjoints. De plus, cette écriture
est unique à l’ordre des cycles près.

Exemple 1.1

(
1 2 3 4 5 6
5 2 6 1 4 3

) = (1, 5, 4) ∘ (3, 6) = (3, 6) ∘ (1, 5, 4)

Exercice 1.1

Écrire sous la forme usuelle (tableau) et sous forme de composée de cycles disjoints la permutation (2, 3)∘(4, 3, 1)∘(5, 2, 3).

Théorème 1.2

Toute permutation peut s’écrire comme une composée de transpositions.

Remarque. On dit que le groupe S𝑛 est engendré par les transpositions.

Attention!� Cette décomposition n’est pas unique. Par exemple, (1, 2, 3) = (1, 2) ∘ (2, 3) = (3, 1) ∘ (1, 2).

Exemple 1.2

Décomposition d’un 𝑝-cycle en une composée de transpositions :

(𝑎1, 𝑎2,… , 𝑎𝑝) = (𝑎1, 𝑎2) ∘ (𝑎2, 𝑎3) ∘ … ∘ (𝑎𝑝−1, 𝑎𝑝)

Exercice 1.2

Énumérer tous les éléments de S3.

1.3 Signature

Théorème 1.3 Signature

Il existe un unique morphisme non trivial (non constant) ε du groupe (S𝑛, ∘) sur le groupe ({−1, 1}, ×). On l’appelle la
signature.
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Proposition 1.3

Pour toute transposition τ ∈ S𝑛, ε(τ) = −1.

Remarque. Une permutation de signature +1 est dite paire et une permutation de signature −1 est dite impaire. L’ensemble
des permutations paires de S𝑛, c’est-à-dire le noyau de la sognature, forme un sous-groupe de S𝑛 appelé groupe alterné de
degré 𝑛 et noté A𝑛.

Exercice 1.3

Montrer que pour 𝑛 ≥ 2, le cardinal de A𝑛 est 𝑛!2 .

Exercice 1.4

Montrer que A𝑛 est engendré par les 3-cycles.

Proposition 1.4 Signature d’un cycle

La signature d’un 𝑝-cycle est (−1)𝑝−1. En particulier, la signature d’une transposition est −1.

Remarque. Il suffit donc de savoir décomposer une permutation en une composée de cycles disjoints pour calculer sa signa-
ture.

Exemple 1.3 Calcul de signature

Soit σ = (
1 2 3 4 5
3 4 5 2 1

). Alors σ = (1, 3, 5) ∘ (2, 4) donc ε(σ) = (−1)2 × (−1) = −1.

Inversions

La signature d’une permutation peut se calculer via le nombre d’inversions. Soit σ ∈ S𝑛. On appelle inversion de σ toute
paire {𝑖, 𝑗} d’éléments de J1, 𝑛K telle que 𝑖−𝑗 et σ(𝑖)−σ(𝑗) soient de signes opposés. Si on note I(σ) le nombre d’inversions
de σ, alors ε(σ) = (−1)I(σ).

2 Applications multilinéaires

Définition 2.1 Application multilinéaire

Soient E1, E2,… , E𝑛 et F des 𝕂-espaces vectoriels. On dit que 𝑓∶ E1×E2×⋯×E𝑛 → F est une application 𝑛-linéaire
si elle est linéaire par rapport à chacune de ses variables.
Si F = 𝕂, on dit que 𝑓 est une forme 𝑛-linéaire.

Remarque. L’ensemble des applications 𝑛-linéaires de E1 × ⋯ × E𝑛 dans F est un 𝕂-espace vectoriel. Plus précisément,
c’est un sous-espace vectoriel de FE1×⋯×E𝑛.

Remarque. Une application bilinéaire est une application 2-linéaire.
Une application trilinéaire est une application 3-linéaire.

Remarque. Si 𝑓∶ E1×⋯×E𝑛 → F est une application 𝑛-linéaire, elle est nulle sur tout 𝑛-uplet comportant le vecteur nul.
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Exemple 2.1

En géométrie :

• Dans le plan et l’espace, le produit scalaire est une forme bilinéaire.

• Dans le plan, le déterminant est une forme bilinéaire.

• Dans l’espace, le déterminant est une forme trilinéaire.

• Dans l’espace, le produit vectoriel est une application bilinéaire.

Exemple 2.2

En algèbre :

• Le produit est une application bilinéaire de 𝕂2 dans 𝕂.

• La multiplication matricielle est une application bilinéaire de ℳ𝑛,𝑝(𝕂) ×ℳ𝑝,𝑞(𝕂) dans ℳ𝑛,𝑞(𝕂).

• La composition d’applications linéaires est une application bilinéaire de ℒ(E, F) × ℒ(F,G) dans ℒ(E,G).

Exemple 2.3

En analyse :

• Le produit de fonctions d’un ensemble X à valeurs dans 𝕂 est une application bilinéaire de (𝕂X)2 dans 𝕂X.

• L’application {
𝒞0([𝑎, 𝑏], ℝ)2 ⟶ ℝ

(𝑓, 𝑔) ⟼ ∫
𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑑𝑡

est une forme bilinéaire.

A partir de maintenant, on considère que E1 = E2 = ⋯ = E𝑛.

Définition 2.2 Application multilinéaire symétrique, anti-symétrique, alternée

Soit 𝑓∶ E𝑛 → F une application 𝑛-linéaire.

(i) On dit que 𝑓 est symétrique si :

∀σ ∈ S𝑛, ∀(𝑥1, 𝑥2…,𝑥𝑛) ∈ E𝑛, 𝑓(𝑥σ(1), 𝑥σ(2),… , 𝑥σ(𝑛)) = 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛)

(ii) On dit que 𝑓 est antisymétrique si :

∀σ ∈ S𝑛, ∀(𝑥1, 𝑥2…,𝑥𝑛) ∈ E𝑛, 𝑓(𝑥σ(1), 𝑥σ(2),… , 𝑥σ(𝑛)) = ε(σ)𝑓(𝑥1, 𝑥2,… , 𝑥𝑛)

(iii) On dit que 𝑓 est alternée si :

∀(𝑥1, 𝑥2…,𝑥𝑛) ∈ E𝑛, ∀(𝑖, 𝑗) ∈ J1, 𝑛K2, (𝑖 ≠ 𝑗 et 𝑥𝑖 = 𝑥𝑗) ⇒ 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛) = 0F

Remarque. L’ensemble des applications 𝑛-linéaires symétriques (resp. antisymétriques, alternées) est un sous-espace vecto-
riel de l’espace vectoriel des applications 𝑛-linéaires de E𝑛 dans F.
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Proposition 2.1

Une application multilinéaire alternée est antisymétrique. La réciproque est vraie si 𝕂 = ℝ ou 𝕂 = ℂ.

Remarque. En ce qui nous concerne, il y aura donc équivalence parfaite ente «alternée» et «antisymétrique».

Exemple 2.4

• Le produit scalaire est une forme bilinéaire symétrique.

• Le produit vectoriel est une application bilinéaire antisymétrique ou alternée.

• Le déterminant dans le plan est une forme bilinéaire antisymétrique ou alternée.

• Le déterminant dans l’espace est une forme trilinéaire antisymétrique ou alternée.

Proposition 2.2

Soit 𝑓∶ E𝑛 → F une application 𝑛-linéaire antisymétrique (ou alternée). Soit (𝑢1,… , 𝑢𝑛) une famille liée de E. Alors
𝑓(𝑢1,… , 𝑢𝑛) = 0F.

3 Déterminant d’une famille de vecteurs

Définition 3.1 Déterminant d’une famille de vecteurs dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑛 etℬ = (𝑒1,… , 𝑒𝑛) une base de E. On définit une application detℬ∶ E𝑛 →
𝕂 appelée déterminant dans la base ℬ par

∀(𝑥1,… , 𝑥𝑛) ∈ E𝑛, detℬ(𝑥1,… , 𝑥𝑛) = ∑
σ∈S𝑛

ε(σ)
𝑛
∏
𝑖=1

𝑒∗σ(𝑖)(𝑥𝑖)

Remarque. Pour tout 𝑗 ∈ J1, 𝑛K, notons (𝑥1,𝑗,… , 𝑥𝑛,𝑗) ∈ 𝕂𝑛 les coordonnées de 𝑥𝑗 dans la base ℬ i.e. 𝑥𝑗 =
𝑛
∑
𝑗=1

𝑥𝑖,𝑗𝑒𝑖. Alors

detℬ(𝑥1,… , 𝑥𝑛) = ∑
σ∈S𝑛

ε(σ)
𝑛
∏
𝑖=1

𝑥σ(𝑖),𝑖

Lemme 3.1

Soient E un 𝕂-espace vectoriel de dimension 𝑛, ℬ une base de E et φ∶ E𝑛 → 𝕂 une forme 𝑛-linéaire alternée. Alors
φ = φ(ℬ) detℬ.

Théorème 3.1

Soient E un 𝕂-espace vectoriel de dimension 𝑛 et ℬ une base de E. Alors detℬ est l’unique forme 𝑛-linéaire alternée
valant 1 en ℬ.
L’ensemble des formes 𝑛-linéaires alternées sur E𝑛 est vect(detℬ).
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Proposition 3.1 Changement de base

Soit E un 𝕂-espace vectoriel de dimension 𝑛. Soit ℬ et ℬ′ deux bases de E. Alors

detℬ′ = detℬ′(ℬ) detℬ

Proposition 3.2 Caractérisation des bases

Soit E un 𝕂-espace vectoriel de dimension 𝑛. Soit ℬ = (𝑒1, 𝑒2,… , 𝑒𝑛) une base de E. Soit (𝑢1,… , 𝑢𝑛) une famille de
vecteurs de E. Alors (𝑢1,… , 𝑢𝑛) est une base de E si et seulement si detℬ(𝑢1,… , 𝑢𝑛) ≠ 0.

Remarque. Réciproquement, la famille (𝑢1,… , 𝑢𝑛) est liée si et seulement si detℬ(𝑢1,… , 𝑢𝑛) = 0.

Proposition 3.3 Pivot de Gauss

Le déterminant d’une famille de vecteurs est :

• multiplié par −1 lorsqu’on échange deux vecteurs de la famille ;

• inchangé lorsqu’on ajoute à un vecteur une combinaison linéaire des autres vecteurs ;

• multiplié par α si on multiplie un vecteur de la famille par α ∈ 𝕂.

Interprétation géométrique d’un déterminant d’ordre 2

#–𝑢

#–𝑣

Si #–𝑢 et #–𝑣 sont deux vecteurs de ℝ2, alors la valeur absolue de leur détermi-
nant dans la base canonique de ℝ2 est l’aire du parallélogramme porté par ces
vecteurs.

Interprétation géométrique d’un déterminant d’ordre 3

#–𝑢
#–𝑣

#–𝑤

Si #–𝑢 , #–𝑣 , #–𝑤 sont trois vecteurs deℝ3, alors la valeur absolue de leur déterminant
dans la base canonique de ℝ3 est le volume du parallélépipède porté par ces
vecteurs.
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Définition 3.2 Orientation d’un ℝ-espace vectoriel

Soit E unℝ-espace vectoriel. Soientℬ1 etℬ2 deux bases de E. On dit queℬ2 a la même orientation queℬ1 si detℬ1(ℬ2) >
0.
La relation binaire «avoir la même orientation que» est une relation d’équivalence sur l’ensemble des bases de E pour
laquelle il existe deux classes d’équivalence.
De manière arbitraire, on convient que l’une des classes d’équivalence sera formée des bases dites directes tandis que
l’autre sera formée des bases dites indirectes.

Orienter un ℝ-espace vectoriel

Pour orienter concrètement un ℝ-espace vectoriel, on choisit une base de référence ℬ0. Toutes les base de même orien-
tation que ℬ0 seront dites directes tandis que les autres seront dites indirectes.
Il n’existe que deux orientations possibles d’un même espace vectoriel.

Attention!� L’orientation n’a de sens que pour les espaces vectoriels réels puisqu’il y est question de signe d’un déter-
minant.

4 Déterminant d’un endomorphisme

Définition 4.1 Déterminant d’un endomorphisme

Soit E un𝕂-espace vectoriel de dimension 𝑛. Soientℬ une base de E et 𝑓 ∈ ℒ(E). Alors le scalaire detℬ(𝑓(ℬ)) ne dépend
pas de la base ℬ choisie. On l’appelle le déterminant de 𝑓 noté det(𝑓).

Exemple 4.1

det(IdE) = 1.

Proposition 4.1 Propriétés du déterminant d’un endomorphisme

Soit E un 𝕂-espace vectoriel de dimension 𝑛. Soient ℬ une base de E et ℱ une famille de 𝑛 vecteurs de E. Soit λ ∈ 𝕂.
Soient enfin 𝑓, 𝑔 ∈ ℒ(E).

(i) detℬ(𝑓(ℱ)) = det(𝑓) detℬ(ℱ) ;

(ii) det(𝑓 ∘ 𝑔) = det(𝑓) det(𝑔) ;

(iii) 𝑓 est un automorphisme de E si et seulement si det(𝑓) ≠ 0 et dans ce cas, det(𝑓−1) = det(𝑓)−1.

(iv) det(λ𝑓) = λ𝑛 det(𝑓)

Exercice 4.1

Calculer le déterminant d’une symétrie, d’un projecteur.

5 Déterminant d’une matrice carrée

5.1 Définition et premières propriétés
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Définition 5.1

Soit A ∈ ℳ𝑛(𝕂). On appelle déterminant de A, noté det(A), le déterminant des vecteurs colonnes de A dans la base
canonique de ℳ𝑛,1(𝕂) ou, de manière équivalente, le déterminant de l’endomorphisme de 𝕂𝑛 canoniquement associé à
A. Il s’ensuit que si A = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛

det(A) = ∑
σ∈S𝑛

ε(σ)
𝑛
∏
𝑖=1

𝑎σ(𝑖),𝑖

Notation 5.1

Soit A = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛. Le déterminant de A peut se noter

|
|
|
|
|
|
|
|
|
|
|

𝑎1,1 𝑎1,2 … 𝑎1,𝑗 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑗 … 𝑎2,𝑛
⋮ ⋮ ⋮ ⋮
𝑎𝑖,1 𝑎𝑖,2 … 𝑎𝑖,𝑗 … 𝑎𝑖,𝑛
⋮ ⋮ ⋮ ⋮
𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑗 … 𝑎𝑛,𝑛

|
|
|
|
|
|
|
|
|
|
|

.

Proposition 5.1 Lien entre les différentes notions de déterminant

Soit E un espace vectoriel de dimension 𝑛 et ℬ une base de E.

(i) Soit ℱ une famille de 𝑛 vecteurs de E. Alors detℬ(ℱ) = det(matℬ(ℱ)).

(ii) Soit 𝑓 ∈ ℒ(E). Alors det(𝑓) = det(matℬ(𝑓)).

Déterminant d’ordre 2 : règle du γ

𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

|
|
|
|
|
|
|

|
|
|
|
|
|
|

− = 𝑎1,1𝑎2,2 − 𝑎2,1𝑎1,2

Déterminant d’ordre 3 : règle de Sarrus

|
|
|
|
|

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,1 𝑎3,2 𝑎3,3

|
|
|
|
|
=
+

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

⏞⎴⎴⏞⎴⎴⏞𝑎1,1𝑎2,2𝑎3,3 +

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

⏞⎴⎴⏞⎴⎴⏞𝑎2,1𝑎3,2𝑎1,3 +

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

⏞⎴⎴⏞⎴⎴⏞𝑎3,1𝑎1,2𝑎2,3
− 𝑎3,1𝑎2,2𝑎1,3⏟⎵⎵⏟⎵⎵⏟

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

− 𝑎2,1𝑎1,2𝑎3,3⏟⎵⎵⏟⎵⎵⏟

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

− 𝑎1,1𝑎3,2𝑎2,3⏟⎵⎵⏟⎵⎵⏟

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3
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Exercice 5.1

Montrer que le déterminant d’une matrice à coefficients dans ℤ est un entier.

Proposition 5.2 Propriétés du déterminant d’une matrice carrée

Soit λ ∈ 𝕂. Soient A, B ∈ ℒ(E).

(i) det(AB) = det(A) det(B) ;

(ii) A est inversible si et seulement si det(A) ≠ 0 et dans ce cas, det(A−1) = det(A)−1 ;

(iii) det(λA) = λ𝑛 det(A) ;

Attention!� Le déterminant n’est pas linéaire ! En général, det(λA + μB) ≠ λ det(A) + μ det(B).

Proposition 5.3 Déterminant d’une transposée

Soit A = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 ∈ ℳ𝑛(𝕂). Alors

∑
σ∈S𝑛

ε(σ)
𝑛
∏
𝑖=1

𝑎𝑖,σ(𝑖) = ∑
σ∈S𝑛

ε(σ)
𝑛
∏
𝑖=1

𝑎σ(𝑖),𝑖

Autrement dit, det(A⊤) = det(A).

Exercice 5.2

Montrer qu’une matrice antisymétrique de taille impaire est non inversible.

Factorisation

Le déterminant d’une matrice est linéaire en chaque colonne (par définition) ou ligne (puisque le déterminant d’une
matrice est égal au déterminant de sa transposée). Ceci permet de factoriser des déterminants.

Exemple 5.1

|
|
|
|
|

λ 2 0
2λ −1 3
−λ 2 1

|
|
|
|
|
= λ

|
|
|
|
|

1 2 0
2 −1 3
−1 2 1

|
|
|
|
|

|
|
|
|
|

1 2 0
2λ −λ 3λ
−1 2 1

|
|
|
|
|
= λ

|
|
|
|
|

1 2 0
2 −1 3
−1 2 1

|
|
|
|
|

5.2 Opérations sur les lignes et les colonnes d’une matrice
L’objectif est de se ramener au calcul du déterminant d’une matrice triangulaire dont on verra qu’il est simple à calculer.
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Proposition 5.4

Notons (C𝑖)1≤𝑖≤𝑛 la famille des vecteurs colonnes d’une matrice A. Soient 𝑖, 𝑗 ∈ J1, 𝑛K avec 𝑖 ≠ 𝑗. Soit α ∈ 𝕂.

(i) L’opération C𝑖 ↔ C𝑗 multiplie le déterminant par −1.

(ii) L’opération C𝑖 ← C𝑖 + αC𝑗 laisse le déterminant invariant.

(iii) L’opération C𝑖 ← αC𝑖 multiplie le déterminant par α.

De même, si on note (L𝑖)1≤𝑖≤𝑛 la famille des vecteurs lignes d’une matrice A :

(i) L’opération L𝑖 ↔ L𝑗 multiplie le déterminant par −1.

(ii) L’opération L𝑖 ← L𝑖 + αL𝑗 laisse le déterminant invariant.

(iii) L’opération L𝑖 ← αL𝑖 multiplie le déterminant par α.

5.3 Développement par rapport à une ligne ou une colonne

Définition 5.2 Mineur, cofacteur

Soient A = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 ∈ ℳ𝑛(𝕂) et 𝑖, 𝑗 ∈ J1, 𝑛K.

• On appelle mineur de 𝑎𝑖,𝑗 le déterminant Δ𝑖,𝑗 de la matrice obtenue en supprimant la 𝑖ème ligne et la 𝑗ème colonne
de A.

• On appelle cofacteur de 𝑎𝑖,𝑗 le scalaire (−1)𝑖+𝑗Δ𝑖,𝑗.

Proposition 5.5

Soit A = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 ∈ ℳ𝑛(𝕂).

• Développement par rapport à une ligne : soit 𝑖 ∈ J1, 𝑛K ;

det(A) =
𝑛
∑
𝑗=1

(−1)𝑖+𝑗𝑎𝑖,𝑗Δ𝑖,𝑗

• Développement par rapport à une colonne : soit 𝑗 ∈ J1, 𝑛K ;

det(A) =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖,𝑗Δ𝑖,𝑗
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Exemple 5.2

En développant par rapport à la première colonne :

|
|
|
|
|

1 4 7
2 5 8
3 6 9

|
|
|
|
|
= +1

||||

5 8
6 9

||||
− 2

||||

4 7
6 9

||||
+ 3

||||

4 7
5 8

||||
= 0

En développant par rapport à la deuxième ligne :

|
|
|
|
|

1 4 7
2 5 8
3 6 9

|
|
|
|
|
= −2

||||

4 7
6 9

||||
+ 5

||||

1 7
3 9

||||
− 8

||||

1 4
3 6

||||
= 0

Remarque. Cette technique de calcul de déterminant révèle tout son intérêt lorsque l’on développe par rapport à une ligne
ou une colonne qui comporte beaucoup de zéros.

Corollaire 5.1 Déterminant d’une matrice triangulaire

Le déterminant d’une matrice triangulaire (supérieure ou inférieure) est égal au produit de ses coefficients diagonaux.

Remarque. On retrouve le fait qu’une matrice triangulaire est inversible si et seulement si ses coefficients diagonaux sont
non nuls.
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Méthode Calcul du déterminant par pivot de Gauss et développement

On a tout intérêt à développer par rapport à une ligne ou une colonne comportant beaucoup de zéros. On utilise donc le
pivot de Gauss pour faire apparaître des zéros.

|
|
|
|
|
|
|

1 2 −2 3
−3 2 4 1
2 2 1 0
1 −2 −3 −4

|
|
|
|
|
|
|

=

|
|
|
|
|
|
|

1 2 −2 3
0 8 −2 10
0 −2 5 −6
0 −4 −1 −7

|
|
|
|
|
|
|

L2 ← L2 + 3L1
L3 ← L3 − 2L1
L4 ← L4 − L1

=

|
|
|
|
|

8 −2 10
−2 5 −6
−4 −1 −7

|
|
|
|
|
en développant par rapport à la première colonne

= −2

|
|
|
|
|

−4 −2 10
1 5 −6
2 −1 −7

|
|
|
|
|
en factorisant par −2 la première colonne

= 2

|
|
|
|
|

1 5 −6
−4 −2 10
2 −1 −7

|
|
|
|
|

L1 ↔ L2

= 2

|
|
|
|
|

1 5 −6
0 18 −14
0 −11 5

|
|
|
|
|

L2 ← L2 + 4L1
L3 ← L3 − 2L1

= 2
||||

18 −14
−11 5

||||
en développant par rapport à la première colonne

= 2(18 × 5 − 14 × 11) = −128

Exercice 5.3

Calcul de

|
|
|
|
|

𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

|
|
|
|
|
.

Proposition 5.6 Déterminants de Vandermonde

Soit (𝑥0,… , 𝑥𝑛) ∈ ℂ𝑛+1.
|
|
|
|
|
|
|
|
|

1 𝑥0 𝑥20 … 𝑥𝑛0
1 𝑥1 𝑥21 … 𝑥𝑛1
1 𝑥2 𝑥22 … 𝑥𝑛2
⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥2𝑛 … 𝑥𝑛𝑛

|
|
|
|
|
|
|
|
|

= ∏
0≤𝑖<𝑗≤𝑛

(𝑥𝑗 − 𝑥𝑖)

Remarque. Il s’agit du déterminant de la matrice de Φ∶ { 𝕂𝑛[X] ⟶ 𝕂𝑛+1

P ⟼ (P(𝑥0),… , P(𝑥𝑛))
dans les bases canoniques

de 𝕂𝑛[X] et 𝕂𝑛+1. On retrouve ainsi le fait que Φ est bijective si et seulement si les 𝑥𝑖 sont distincts deux à deux (polynômes
interpolateurs de Lagrange).
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Proposition 5.7 Déterminants par blocs

Le déterminant d’une matrice triangulaire par blocs (et a fortiori diagonale par blocs) est le produit des déterminants
des blocs diagonaux.

Attention!� En général
||||

A B
C D

||||
≠ det(A) det(D) − det(B) det(C).

5.4 Comatrice

Définition 5.3 Comatrice

Soit A ∈ ℳ𝑛(𝕂). On appelle comatrice de A la matrice des cofacteurs de A i.e. com(A) = ((−1)𝑖+𝑗Δ𝑖,𝑗)1≤𝑖,𝑗≤𝑛.

Proposition 5.8 Formule de la comatrice

Soit A ∈ ℳ𝑛(𝕂). Alors com(A)⊤A = A com(A)⊤ = det(A)I𝑛.
En particulier, si A est inversible : A−1 = 1

det(A) com(A)⊤.

Remarque. Cette formule est souvent inutilisable en pratique. Néanmoins pour 𝑛 = 2, il convient de retenir la formule
suivante.

Si A = (
𝑎 𝑐
𝑏 𝑑

) est inversible (i.e. si 𝑎𝑑 − 𝑏𝑐 ≠ 0) alors A−1 = 1
𝑎𝑑 − 𝑏𝑐 (

𝑑 −𝑐
−𝑏 𝑎

).

Exercice 5.4

On note GL𝑛(ℤ) l’ensemble des matrices inversibles de ℳ𝑛(ℤ) dont l’inverse est également dans ℳ𝑛(ℤ).
Soit A ∈ ℳ𝑛(ℤ). Montrer que A ∈ GL𝑛(ℤ) ⟺ det(A) = ±1.

6 Systèmes linéaires (hors programme)

Proposition 6.1 Formules de Cramer

Soient A ∈ GL𝑛(𝕂) et B ∈ 𝕂𝑛. Pour 𝑗 ∈ J1, 𝑛K, on note A𝑗 la matrice obtenue en remplaçant la 𝑗ème colonne de A par B.

L’unique solution X =
⎛
⎜
⎜
⎝

𝑥1
⋮
𝑥𝑛

⎞
⎟
⎟
⎠

du système AX = B est donnée par :

∀𝑗 ∈ J1, 𝑛K, 𝑥𝑗 =
detA𝑗
detA

Attention!� Ce résultat a un intérêt purement théorique. Il est hors de question d’utiliser cette méthode pour résoudre
en pratique un système linéaire dès que 𝑛 ≥ 4. En effet, cela nécessiterait le calcul de 𝑛 + 1 déterminants de taille 𝑛, ce
qui est bien plus long que notre bon vieux pivot de Gauss !

Néanmoins, pour 𝑛 = 2, on peut retenir les formules suivantes.
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Résolution d’un système de deux équations à deux inconnues

Le système {
𝑎𝑥 + 𝑏𝑦 = 𝑒
𝑐𝑥 + 𝑑𝑦 = 𝑓

admet une unique solution si et seulement si 𝑎𝑑 − 𝑏𝑐 ≠ 0 et dans ce cas :

𝑥 =

||||

𝑒 𝑏
𝑓 𝑑

||||
||||

𝑎 𝑏
𝑐 𝑑

||||

=
𝑒𝑑 − 𝑓𝑏
𝑎𝑑 − 𝑏𝑐 𝑦 =

||||

𝑎 𝑒
𝑐 𝑓

||||
||||

𝑎 𝑏
𝑐 𝑑

||||

=
𝑎𝑓 − 𝑐𝑒
𝑎𝑑 − 𝑏𝑐
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