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EsPACES VECTORIELS
DE DIMENSION FINIE

1 Familles de vecteurs

1.1 Opérations sur une famille engendrant un sous-espace vectoriel

Lemme 1.1

Soient E un K-espace vectoriel, A et B deux parties de E. Alors

vect(A) = vect(B) < A C vect(B) ET B C vect(A)

Proposition 1.1

Soient E un K-ev et (1;);cr une famille de vecteurs de E. Alors vect(y;);c1 n’est pas modifié si on effectue les opérations
suivantes sur la famille (u;);er :

(i) permutation des u;;
(ii) multiplication de I’un des u; par un scalaire non nul ;
(iii) ajout a I’un des u; une combinaison linéaire des autres vecteurs;
(iv) suppression d’un u; combinaison linéaire des autres vecteurs (notamment les u; nuls);

(v) adjonction d’un vecteur combinaison linéaire des u;.

Définition 1.1 Pivot de Gauss

Les opérations (i), (ii), (iii) de la proposition précédente seront appelées opérations du pivot de Gauss.

Exercice 1.1

Soient a = (1,2,1), b = (1,3,2),c = (1,1,0) et d = (3,8, 5) des vecteurs de R3. Montrer que vect(a, b) = vect(c, d).

1.2 Familles génératrices

Définition 1.2 Famille génératrice

Soient E un K-espace vectoriel et (;);c; € EL. On dit que la famille (u;);; est une famille génératrice de E ou encore
qu’elle engendre E si tout vecteur de E peut s’ écrire comme une combinaison linéaire des u;, autrement dit si vect(u;);er =
E.

REMARQUE. L’espace vectoriel {0} admet la famille vide pour famille génératrice puisqu’on a vu que vect(@) = {0}.
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Exemple 1.1

Trois vecteurs non coplanaires de 1’espace engendre 1’espace vectoriel.

Exemple 1.2

Soit n € N*. Posons e¢; = (1,0,...,0), e, = (0,1,0...,0), ..., e, = (0,...,0,1) des vecteurs de K". Alors (e;)1<i<p
engendre K",

Exemple 1.3

La famille (1,X, X2, ..., X™) est une famille génératrice de K, [X].
La famille (X"),cn est une famille génératrice de K[X].

Proposition 1.2

Une famille génératrice reste génératrice si :
(i) on effectue les opérations du pivot de Gauss;
(ii) on lui ajoute un vecteur (i.e. une sur-famille d’une famille génératrice est génératrice);

(iii) on lui enléve un vecteur qui est combinaison linéaire des autres vecteurs de la famille (notamment un vecteur nul).

\Y 510 Montrer qu’une famille est génératrice

Pour montrer qu’une famille finie (u,, ..., 4,) d’un K-espace vectoriel E est génératrice, on se donne x € E et on montre
n
qu’il existe (A4, ...,4,) € K" tel que x = Z Ay,

i=1
Pour montrer qu’une famille infinie (u;);c; d’un K-espace vectoriel E est génératrice, on se donne x € E et on montre
qu'il existe (4;) € KO (famille presque nulle) telle que x = Z A

iel

1.3 Familles libres, familles liées

Définition 1.3 Famille libre, famille liée (cas d’une famille finie)

Soient E un K-espace vectoriel et uy, ... ,u,, € E. On dit que la famille (uy, ..., u,) est libre ou encore que les u; sont
linéairement indépendants si

n
V(s oo hy) €K Y 4wy =0 => Vi€ [1,n],4;=0
i=1

Dans le cas contraire, on dit que la famille (uy, ... , u,) est liée ou encore que les u; sont linéairement dépendants. De
maniére équivalente, la famille (u,, ..., u,) est liée si et seulement si 1’un des u; est combinaison linéaire des autres.

REMARQUE. La famille vide @ est toujours une famille libre.
Une famille qui contient le vecteur nul est liée.
Une famille qui contient plusieurs fois le méme vecteur est liée.
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@ ATTENTION! Le contraire de «libre» n’est pas «génératrice» mais «liée».

\9(33,U1iY Montrer qu’une famille est libre

Pour montrer qu’une famille (uy, ..., u,) d’un K-espace vectoriel E est libre, on se donne (A4, ...,A,) € K" tel que
n

Z Aju; = Og et on montre que tous les A; sont nuls.
i=1

Exemple 1.4

Une famille a un vecteur est libre si et seulement si ce vecteur est non nul.
Une famille a deux vecteurs est libre si et seulement si ces deux vecteurs sont non colinéaires.
Une famille a trois vecteurs est libre si et seulement si ces trois vecteurs sont non coplanaires.

Exemple 1.5

Soit n € N*. Posons e; = (1,0, ...,0), e; = (0,1,0...,0), ..., e, = (0,...,0,1) des vecteurs de K". Alors (e;);<;<, est
une famille libre de K".

Exemple 1.6

La famille (1,X, X2, ..., X™) est une famille libre de K[X].

n

g% ATTENTION ! Quand on considere une famille de fonctions (f;);<;<,, du R-espace vectoriel RI, dire que Z Aifi = Osignifie

i=1
n

que Z Aifi(x) = 0 pour tout x € I (le premier zéro désigne la fonction nulle et le second désigne le zéro de R).
i=1

Exercice 1.2

Montrer que la famille (sin, cos) est une famille libre de R®.

Définition 1.4 Famille libre, famille liée (cas d’une famille quelconque)

Soient E un [K-espace vectoriel et (¢;);c; € E. On dit que la famille (&;);<; est libre ou encore que les u; sont linéairement
indépendants si
V(Ai)iel E K(I), Z ?»iui =0 = Vi€l )"i =0
iel
Dans le cas contraire, on dit que la famille (u;);c1 est liée ou encore que les u; sont linéairement dépendants. De maniére
équivalente, la famille (u;);c1 est liée si et seulement si I’'un des u; est combinaison linéaire des autres.

REMARQUE. Pour montrer qu’une famille infinie est libre, il est donc équivalent de montrer que toute sous-famille finie de
cette famille est libre.

REMARQUE. Si (u;);c1 est une famille libre et si (4;);e1 et (M;)ier sont deux familles presque nulles de scalaires telles que

Z)Liui = z M;u;, alors A; = ; pour tout i € L.

iel iel
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Exemple 1.7

La famille (X"),,cn est une famille libre de K[X].

Proposition 1.3

Une famille libre reste libre si :
(i) on effectue les opérations du pivot de Gauss;
(ii) on lui enléve un vecteur (une sous-famille d’une famille libre est libre) ;
(iii) on lui ajoute un vecteur qui n’est pas combinaison linéaire des vecteurs de cette famille.
Une famille liée reste liée si :
(i) on effectue les opérations du pivot de Gauss;
(ii) on lui ajoute un vecteur (i.e. une sur-famille d’une famille liée est liée) ;

(iii) on lui enléve un vecteur qui n’est pas combinaison linéaire des autres vecteurs de cette famille;

1.4 Bases

Définition 1.5 Base

Soient E un K-espace vectoriel et (1;);e; € E!. On dit que la famille (u;);; est une base de E si elle est a la fois génératrice
de E et libre.

REMARQUE. La famille vide est une base de 1’espace vectoriel nul.

Exemple 1.8

Une famille de trois vecteurs non coplanaires de 1’espace est une base de 1’espace vectoriel géométrique.

Exemple 1.9

(1, 1) est une base du R-espace vectoriel C.

Exemple 1.10

Soit n € N*. Posons e; = (1,0,...,0), e, =(0,1,0...,0), ..., e, = (0, ...,0,1) des vecteurs de K". Alors (€;);<j<p €St
une base de K". On I’appelle la base canonique de KV.

Exemple 1.11

La famille (1,X, X2, ..., X") est une base de K,[X]. On I’appelle 1a base canonique de IK,,[X].
La famille (X"),,cn est une base de K[X].
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@ ATTENTION! Il n’y a pas unicité de la base pour un espace vectoriel donné.

Définition 1.6 Coordonnées dans une base finie

Soit (ey, ... , e,) une base d’un K-espace vectoriel E. Soit x € E. On appelle coordonnées de x dans la base (ey, ..., €;,)
n

I’unique n-uplet (A4, ..., A,) € K" tel que x = Z Ase;.

i=1

Définition 1.7 Coordonnées dans une base quelconque

Soit (e;);e1 une base d’un K-espace vectoriel E. Soit x € E. On appelle coordonnées de x dans la base (e;);c1 1’unique
famille presque nulle (1;);c; € KO telle que x = 2 Ase;.
iel

Proposition 1.4 Base d’une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E. On suppose qu’il existe une base F de F et une
base G de G. Alors la famille B obtenue par concaténation des bases F et G est une base de F + G si et seulement si F et
G sont en somme directe.

Dans ce cas, B est dite base adaptée a la somme directe F @ G.

@ AtTENTION! Il est essentiel que F et G soient en somme directe. En effet, dans R3, soit P le plan vectoriel d’équation
x = 0 et Q le plan vectoriel d’équation y = 0. Il est clair que ((0, 1, 0), (0, 0, 1)) est une base de P et que ((1,0, 0), (0,0, 1))

x=0
est une base Q. Or P et Q ne sont pas en somme directe puisque P N Q est la droite vectorielle d’équations .Et

on voit bien que ((0, 1, 0),(0,0,1),(1,0,0), (0,0, 1)) n’est pas une base puisqu’elle contient deux fois le méme vecteur.

1.5 Cas particulier de K"

Définition 1.8 Famille échelonnée de vecteurs de K"

Soit (uy, ..., up) une famille de vecteurs de [K". Pour tout i € [[1, p], on note a; (resp. b;) le nombre de zéros initiaux
(resp. terminaux) dans le vecteur ;. On dit que la famille (uy, ..., u,) est échelonnée si une des suites finies (ay, ..., a,)
ou (by, ..., b,) est strictement monotone.

Exemple 1.12

Les vecteurs (2,3,1,2), (—2,1,0,0) et (1,0, 0, 0) forment une famille échelonnée de R*.
Les vecteurs (3,2,1, —1), (0,2, —1,4), (0,0, 2, 3) et (0,0,0,0) forment une famille échelonnée de R*.

Proposition 1.5 Liberté d’une famille échelonnée

Une famille échelonnée de K" est libre si et seulement si elle ne comporte pas le vecteur nul.

http://1lgarcin.github.io 5


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

Proposition 1.6

Toute famille de K" peut étre transformée a 1’aide des opérations du pivot de Gauss en une famille échelonnée.

\Y 51 03 Y Montrer qu’une famille de K" est libre ou liée

11 suffit d’écrire la matrice dont les colonnes sont les vecteurs de la famille et de se ramener a une famille échelonnée en
utilisant le pivot de Gauss sur les colonnes. Si le vecteur nul apparait, c’est que la famille est liée. Sinon, elle est libre.

Exemple 1.13

Montrer que la famille ((1, 2, 1), (1, 3,2), (1, 1, 0)) est liée.
Montrer que la famille ((2,1, 3,4), (1, 3,2,0),(2, 3,1, —1)) est libre.

W\ (53 LY Déterminer une base d’un sous-espace vectoriel de K"

Soit F un sous-espace vectoriel de K".

* Si F est donné sous forme cartésienne (i.e. a I’aide d’un systeme d’équations linéaires), la méthode «mettre sous
forme d’un vect» vu dans le chapitre Espaces vectoriels fournit une base de F.

* Si F est donné sous forme paramétrique (i.e. a 1’aide d’une famille génératrice), la méthode du pivot de Gauss
fournit une base de F apres suppression des éventuels vecteurs nuls.

2 Dimension d’un espace vectoriel

Définition 2.1 Dimension finie

On dit qu'un espace vectoriel est de dimension finie s’il posseéde une famille génératrice finie.

Exemple 2.1

Pour n > 1, K" est de dimension finie puisque sa base canonique est une famille génératrice finie.

Exemple 2.2

K[X] n’est pas de dimension finie. En effet, supposons qu’il admette une famille génératrice finie (P,, ..., P,). Posons

d = max degP,. Alors X4*1 n’est pas une combinaison linéaire des P..
1<i<n

2.1 Existence de bases
Théoréme 2.1

Soit E un K-espace vectoriel de dimension finie. Soient £ une famille libre finie de E et G une famille génératrice finie
de E. Alors on peut compléter £ en une base de E en lui ajoutant des vecteurs de G.
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Corollaire 2.1 Existence de bases

Tout K-espace vectoriel de dimension finie possede une base finie.

Corollaire 2.2 Théoreme de la base incompléte/extraite

Soit E un K-espace vectoriel de dimension finie.
(i) On peut compléter toute famille libre finie de E en une base de E.

(i) On peut extraire de toute famille génératrice finie de E une base de E.

Exemple 2.3

Soit F = vect((1, -5, 7),(2,6,8),(3,1,15),(1,11,1)). Alors ((1, -5, 7), (2, 6, 8)) est une base de F.

REMARQUE. Si on admet I’axiome du choix, les théoremes précédents restent vraie en dimension infinie quitte a considérer
des familles infinies.

2.2 Définition de la dimension

Lemme 2.1

Soit E un K-espace vectoriel de dimension finie possédant une famille génératrice a n vecteurs. Alors toute famille libre
de E comporte au plus n vecteurs.

Théoréme 2.2 Dimension

Soit E un K-espace vectoriel de dimension finie. Toutes les bases de E ont méme nombre d’éléments. On appelle cet
entier la dimension de E (sur K) et on le note dim E.

REMARQUE. La dimension de I’espace nul est 0.

REMARQUE. On appelle droite vectorielle un espace vectoriel de dimension 1 et plan vectoriel un espace vectoriel de dimen-
sion 2.

\Y (210 Y Déterminer la dimension d’un espace vectoriel

Pour déterminer la dimension d’un espace vectoriel, il suffit de déterminer une base de E. Son nombre d’éléments donnera
la dimension.

Exemple 2.4

» L’ensemble des solutions d’une équation différentielle linéaire homogene d’ordre 1 est une droite vectorielle.

» L’ensemble des solutions d’une équation différentielle linéaire homogene d’ordre 2 a coeflicients constants est un
plan vectoriel.

» L’ensemble des suites réelles vérifiant une relation de récurrence linéaire homogene d’ordre 2 a coefficients constants
est un plan vectoriel.
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Exemple 2.5

e dim K" = n.

e dimK,[X]=n+1.

» [K[X] est de dimension infinie.

REMARQUE. Un ensemble E peut étre muni d’une structure d’espace vectoriel pour différents corps de base. La dimension
peut alors différer suivant le corps de base. En cas d’ambiguité, la dimension d’un espace vectoriel E pour le corps de base K
est notée dimy E.

Exemple 2.6

dimg C =1 et dimp C = 2.

Exercice 2.1

Soit E un C-espace vectoriel de dimension finie. Montrer que E peut étre muni d’une structure de R-espace vectoriel et
montrer que dimg E = 2dim¢ E.

Corollaire 2.3

Soit E un K-espace vectoriel de dimension finie n.
(i) Toute famille libre de E possede au plus n vecteurs.
(ii) Toute famille génératrice de E posséde au moins n vecteurs.

(iii) Toute famille possédant strictement plus de n vecteurs est liée.

ATTENTION! Les réciproques sont fausses.
¢ Une famille d’un espace vectoriel de dimension n possédant moins de n vecteurs n’est pas forcément libre.

* Une famille d’un espace vectoriel de dimension n possédant plus de n vecteurs n’est pas forcément génératrice.

¢ Une famille liée peut posseder n vecteurs ou moins.

Corollaire 2.4

Soit E un espace vectoriel de dimension n et B une famille de n vecteurs. Les propositions suivantes sont équivalentes :
(i) B est une famille génératrice de E;
(ii) B est une famille libre de E;

(iii) B est une base de E.
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\Y (210 Prouver qu’une famille est une base en dimension finie

Soit E un espace vectoriel de dimension n et B une famille a n vecteurs. Pour prouver que B est une base de E, pas besoin
de prouver que B est génératrice et libre. Le théoreme précédent nous dit qu’il suffit de montrer que B est génératrice ou
libre (en pratique, on montre plus souvent la liberté). Le travail est donc divisé par deux si on connait la dimension de
I’espace vectoriel.

Exemple 2.7

La famille ((0, 1,2), (1, 2,0), (2,0, 1)) est une base de R3.

Proposition 2.1 Dimension d’un produit

p p
Soient Ey, ..., E,, des K-espaces vectoriels de dimension finie. Alors H Ej est de dimension finie et dim (H Ek) =

k=1 k=1
p

dim Ek'
k=1

3 Dimension et sous-espaces vectoriels

3.1 Dimension d’un sous-espace vectoriel

Proposition 3.1 Dimension d’un sous-espace vectoriel

Soit F un sous-espace vectoriel d’un espace vectoriel de dimension finie E. Alors F est de dimension finie et dimF <
dim E. De plus, dim F = dim E si et seulement si E = F.

Exemple 3.1

Les sous-espaces vectoriels de R? sont le sous-espace nul, les droites vectorielles et R2.
Les sous-espaces vectoriels de R3 sont le sous-espace nul, les droites vectorielles, les plans vectoriels et R3.

Exemple 3.2 Equations différentielles linéaires homogeénes d’ordre 1

Soit (E) I’équation différentielle y' + ay = 0 ot a € C(I, K). On note § 1’ensemble des solutions de (E) sur I & valeurs
dans K. Alors 8 est un sous-espace vectoriel de K! de dimension 1.

Exemple 3.3 Equations différentielles linéaires homogeénes d’ordre 2 i coefficients constants

Soient (a, b) € K? et (E) ’équation différentielle y” + ay’ + by = 0. On note S I’ensemble des solutions de (E) sur R &
valeurs dans K. Alors 8 est un sous-espace vectoriel de K® de dimension 2.

Exemple 3.4 Récurrences linéaires homogenes

Soient (a,b) € K? et 8 ’ensemble des suites (u,,),en 2 valeurs dans K telles que Uy, + au,,., + bu,, = 0 pour tout
n € N. Alors 8 est un sous-espace vectoriel de KN de dimension 2.
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\YE10 Y Montrer que deux sous-espaces vectoriels sont égaux

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel E. Pour montrer que F = G, il suffit de montrer que
F Cc G (ouG C F) et que dimF = dim G. Travail divisé par deux.

Exercice 3.1

Soient a = (1,2,1), b = (1,3,2), c = (1,1,0) et d = (3,8, 5) des vecteurs de R3. Montrer que vect(a, b) = vect(c, d).

Définition 3.1 Hyperplan

Soit E un espace vectoriel de dimension n. On appelle hyperplan de E tout sous-espace vectoriel de E de dimension
n—1.

3.2 Dimension d’une somme
Proposition 3.2 Existence d’un supplémentaire

Soit F un sous-espace vectoriel d’un espace vectoriel E de dimension finie. Alors F posséde un supplémentaire dans E.

@ ‘ ATTENTION! On rappelle qu’il n’y a pas unicité du supplémentaire.

REMARQUE. Sion admet I’axiome du choix, 1’existence d’un supplémentaire est également garantie en dimension infinie.

Proposition 3.3 Dimension d’une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels de dimension finie en somme directe d’un espace vectoriel E. Alors F @ G est
de dimension finie et dimF @ G = dimF + dim G.

Proposition 3.4 Formule de Grassmann

Soient F et G deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E. Alors F + G est de dimension finie
et
dimF+ G =dimF+dimG—-dimFnG

Exercice 3.2

Soient F et G deux sous-espaces vectoriels de dimension 3 de R>. Montrer que F N G # {0}.

Corollaire 3.1 Caractérisation d’une somme directe

Soient F et G deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E. Alors F et G sont en somme directe
si et seulement si dim(F + G) = dimF + dim G.
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Corollaire 3.2 Caractérisation de la supplémentarité

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel de dimension finie E. Alors F et G sont supplémentaires
dans E si et seulement si au moins deux des trois assertions suivantes sont vraies :

(i) dimF 4+ dimG = dimE.
(i) FN G = {0g}.
(iii) F+ G =E.

\YE1 0 Y Prouver que deux sous-espaces vectoriels sont supplémentaires

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel de dimension finie E. Si on connait les dimensions de
E, F et G, pour prouver que F et G sont supplémentaires dans E, il suffit de vérifier que dimF + dimG = dimE et de
montrer, au choix, que F N G = {Og} ou F + G = E (en pratique, on montre plus souvent que la somme est directe).
Travail divisé par deux grace a la dimension.

Exercice 3.3

Soient F = {(x,y,2z) € R3 | x + 2y + 3z = 0} et G = vect((0, 1, 0)). Montrer que F et G sont supplémentaires dans R3.

4 Rang d’une famille de vecteurs

Définition 4.1 Rang d’une famille de vecteurs

Soit E un K-espace vectoriel (pas nécessairement de dimension finie). Soit & une famille finie de vecteurs de E. Alors
vect(F) est de dimension finie et sa dimension est appelée le rang de F noté rg F.

Proposition 4.1

Le rang d’une famille finie de vecteurs est invariant par opérations de pivot de Gauss sur cette famille.

REMARQUE. Si ¥ est une famille de p vecteurs, alors rg & < p.
Si E est de dimension finie n, rig ¥ < n.
Si ces deux conditions sont réunies, on a donc rg & < min(n, p).

Exercice 4.1

Soient # et % deux familles finies d’un espace vectoriels E de dimension finie. Montrer que :

max(rg F,1g ) < 1g(FH U %) <rgHh +1g5

Proposition 4.2 Rang, liberté, génération
Soit F une famille finie de p vecteurs d’un espace vectoriel E.

Alors rg F = card 7 si et seulement si F est libre.
Si de plus E est de dimension finie, rg & = dim E si et seulement si F engendre E.
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WG Rang d’une famille de K”

Soit F une famille de IK". On applique la méthode du pivot de Gauss pour déterminer une base de vect(F). Son cardinal
est est le rang de F.

Exercice 4.2

Déterminer le rang de la famille de vecteurs de R* :

((1’ 2a _3, O)a (_45 _6a 12a 2)’ (_3a _65 12’ 3)a (_25 _4a 6, O)a (_2’ —2, 3’ 1))
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