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Espaces vectoriels
de dimension finie

1 Familles de vecteurs

1.1 Opérations sur une famille engendrant un sous-espace vectoriel

Lemme 1.1

Soient E un 𝕂-espace vectoriel, A et B deux parties de E. Alors

vect(A) = vect(B) ⟺ A ⊂ vect(B) et B ⊂ vect(A)

Proposition 1.1

Soient E un 𝕂-ev et (𝑢𝑖)𝑖∈I une famille de vecteurs de E. Alors vect(𝑢𝑖)𝑖∈I n’est pas modifié si on effectue les opérations
suivantes sur la famille (𝑢𝑖)𝑖∈I :

(i) permutation des 𝑢𝑖 ;

(ii) multiplication de l’un des 𝑢𝑖 par un scalaire non nul ;

(iii) ajout à l’un des 𝑢𝑖 une combinaison linéaire des autres vecteurs ;

(iv) suppression d’un 𝑢𝑖 combinaison linéaire des autres vecteurs (notamment les 𝑢𝑖 nuls) ;

(v) adjonction d’un vecteur combinaison linéaire des 𝑢𝑖.

Définition 1.1 Pivot de Gauss

Les opérations (i), (ii), (iii) de la proposition précédente seront appelées opérations du pivot de Gauss.

Exercice 1.1

Soient 𝑎 = (1, 2, 1), 𝑏 = (1, 3, 2), 𝑐 = (1, 1, 0) et 𝑑 = (3, 8, 5) des vecteurs de ℝ3. Montrer que vect(𝑎, 𝑏) = vect(𝑐, 𝑑).

1.2 Familles génératrices

Définition 1.2 Famille génératrice

Soient E un 𝕂-espace vectoriel et (𝑢𝑖)𝑖∈I ∈ EI. On dit que la famille (𝑢𝑖)𝑖∈I est une famille génératrice de E ou encore
qu’elle engendreE si tout vecteur deE peut s’écrire comme une combinaison linéaire des 𝑢𝑖, autrement dit si vect(𝑢𝑖)𝑖∈I =
E.

Remarque. L’espace vectoriel {0} admet la famille vide pour famille génératrice puisqu’on a vu que vect(∅) = {0}.
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Exemple 1.1

Trois vecteurs non coplanaires de l’espace engendre l’espace vectoriel.

Exemple 1.2

Soit 𝑛 ∈ ℕ∗. Posons 𝑒1 = (1, 0,… , 0), 𝑒2 = (0, 1, 0… , 0), …, 𝑒𝑛 = (0,… , 0, 1) des vecteurs de 𝕂𝑛. Alors (𝑒𝑖)1≤𝑖≤𝑛
engendre 𝕂𝑛.

Exemple 1.3

La famille (1, X, X2,… , X𝑛) est une famille génératrice de 𝕂𝑛[X].
La famille (X𝑛)𝑛∈ℕ est une famille génératrice de 𝕂[X].

Proposition 1.2

Une famille génératrice reste génératrice si :

(i) on effectue les opérations du pivot de Gauss ;

(ii) on lui ajoute un vecteur (i.e. une sur-famille d’une famille génératrice est génératrice) ;

(iii) on lui enlève un vecteur qui est combinaison linéaire des autres vecteurs de la famille (notamment un vecteur nul).

Méthode Montrer qu’une famille est génératrice

Pour montrer qu’une famille finie (𝑢1,… , 𝑢𝑛) d’un 𝕂-espace vectoriel E est génératrice, on se donne 𝑥 ∈ E et on montre

qu’il existe (λ1,… , λ𝑛) ∈ 𝕂𝑛 tel que 𝑥 =
𝑛
∑
𝑖=1

λ𝑖𝑢𝑖.

Pour montrer qu’une famille infinie (𝑢𝑖)𝑖∈I d’un 𝕂-espace vectoriel E est génératrice, on se donne 𝑥 ∈ E et on montre
qu’il existe (λ𝑖) ∈ 𝕂(I) (famille presque nulle) telle que 𝑥 = ∑

𝑖∈I
λ𝑖𝑢𝑖.

1.3 Familles libres, familles liées

Définition 1.3 Famille libre, famille liée (cas d’une famille finie)

Soient E un 𝕂-espace vectoriel et 𝑢1,… , 𝑢𝑛 ∈ E. On dit que la famille (𝑢1,… , 𝑢𝑛) est libre ou encore que les 𝑢𝑖 sont
linéairement indépendants si

∀(λ1,… , λ𝑛) ∈ 𝕂𝑛,
𝑛
∑
𝑖=1

λ𝑖𝑢𝑖 = 0E ⟹ ∀𝑖 ∈ ⟦1, 𝑛⟧ , λ𝑖 = 0

Dans le cas contraire, on dit que la famille (𝑢1,… , 𝑢𝑛) est liée ou encore que les 𝑢𝑖 sont linéairement dépendants. De
manière équivalente, la famille (𝑢1,… , 𝑢𝑛) est liée si et seulement si l’un des 𝑢𝑖 est combinaison linéaire des autres.

Remarque. La famille vide ∅ est toujours une famille libre.
Une famille qui contient le vecteur nul est liée.
Une famille qui contient plusieurs fois le même vecteur est liée.
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Attention!� Le contraire de «libre» n’est pas «génératrice» mais «liée».

Méthode Montrer qu’une famille est libre

Pour montrer qu’une famille (𝑢1,… , 𝑢𝑛) d’un 𝕂-espace vectoriel E est libre, on se donne (λ1,… , λ𝑛) ∈ 𝕂𝑛 tel que
𝑛
∑
𝑖=1

λ𝑖𝑢𝑖 = 0E et on montre que tous les λ𝑖 sont nuls.

Exemple 1.4

Une famille à un vecteur est libre si et seulement si ce vecteur est non nul.
Une famille à deux vecteurs est libre si et seulement si ces deux vecteurs sont non colinéaires.
Une famille à trois vecteurs est libre si et seulement si ces trois vecteurs sont non coplanaires.

Exemple 1.5

Soit 𝑛 ∈ ℕ∗. Posons 𝑒1 = (1, 0,… , 0), 𝑒2 = (0, 1, 0… , 0), …, 𝑒𝑛 = (0,… , 0, 1) des vecteurs de 𝕂𝑛. Alors (𝑒𝑖)1≤𝑖≤𝑛 est
une famille libre de 𝕂𝑛.

Exemple 1.6

La famille (1, X, X2,… , X𝑛) est une famille libre de 𝕂[X].

Attention!� Quand on considère une famille de fonctions (𝑓𝑖)1≤𝑖≤𝑛 duℝ-espace vectorielℝI, dire que
𝑛
∑
𝑖=1

λ𝑖𝑓𝑖 = 0 signifie

que
𝑛
∑
𝑖=1

λ𝑖𝑓𝑖(𝑥) = 0 pour tout 𝑥 ∈ I (le premier zéro désigne la fonction nulle et le second désigne le zéro de ℝ).

Exercice 1.2

Montrer que la famille (sin, cos) est une famille libre de ℝℝ.

Définition 1.4 Famille libre, famille liée (cas d’une famille quelconque)

SoientE un𝕂-espace vectoriel et (𝑢𝑖)𝑖∈I ∈ EI. On dit que la famille (𝑢𝑖)𝑖∈I est libre ou encore que les 𝑢𝑖 sont linéairement
indépendants si

∀(λ𝑖)𝑖∈I ∈ 𝕂(I), ∑
𝑖∈I

λ𝑖𝑢𝑖 = 0E ⟹ ∀𝑖 ∈ I, λ𝑖 = 0

Dans le cas contraire, on dit que la famille (𝑢𝑖)𝑖∈I est liée ou encore que les 𝑢𝑖 sont linéairement dépendants. De manière
équivalente, la famille (𝑢𝑖)𝑖∈I est liée si et seulement si l’un des 𝑢𝑖 est combinaison linéaire des autres.

Remarque. Pour montrer qu’une famille infinie est libre, il est donc équivalent de montrer que toute sous-famille finie de
cette famille est libre.

Remarque. Si (𝑢𝑖)𝑖∈I est une famille libre et si (λ𝑖)𝑖∈I et (μ𝑖)𝑖∈I sont deux familles presque nulles de scalaires telles que
∑
𝑖∈I

λ𝑖𝑢𝑖 = ∑
𝑖∈I

μ𝑖𝑢𝑖, alors λ𝑖 = μ𝑖 pour tout 𝑖 ∈ I.
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Exemple 1.7

La famille (X𝑛)𝑛∈ℕ est une famille libre de 𝕂[X].

Proposition 1.3

Une famille libre reste libre si :

(i) on effectue les opérations du pivot de Gauss ;

(ii) on lui enlève un vecteur (une sous-famille d’une famille libre est libre) ;

(iii) on lui ajoute un vecteur qui n’est pas combinaison linéaire des vecteurs de cette famille.

Une famille liée reste liée si :

(i) on effectue les opérations du pivot de Gauss ;

(ii) on lui ajoute un vecteur (i.e. une sur-famille d’une famille liée est liée) ;

(iii) on lui enlève un vecteur qui n’est pas combinaison linéaire des autres vecteurs de cette famille ;

1.4 Bases

Définition 1.5 Base

SoientE un𝕂-espace vectoriel et (𝑢𝑖)𝑖∈I ∈ EI. On dit que la famille (𝑢𝑖)𝑖∈I est une base deE si elle est à la fois génératrice
de E et libre.

Remarque. La famille vide est une base de l’espace vectoriel nul.

Exemple 1.8

Une famille de trois vecteurs non coplanaires de l’espace est une base de l’espace vectoriel géométrique.

Exemple 1.9

(1, 𝑖) est une base du ℝ-espace vectoriel ℂ.

Exemple 1.10

Soit 𝑛 ∈ ℕ∗. Posons 𝑒1 = (1, 0,… , 0), 𝑒2 = (0, 1, 0… , 0), …, 𝑒𝑛 = (0,… , 0, 1) des vecteurs de 𝕂𝑛. Alors (𝑒𝑖)1≤𝑖≤𝑛 est
une base de 𝕂𝑛. On l’appelle la base canonique de 𝕂ℕ.

Exemple 1.11

La famille (1, X, X2,… , X𝑛) est une base de 𝕂𝑛[X]. On l’appelle la base canonique de 𝕂𝑛[X].
La famille (X𝑛)𝑛∈ℕ est une base de 𝕂[X].

http://lgarcin.github.io 4

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Attention!� Il n’y a pas unicité de la base pour un espace vectoriel donné.

Définition 1.6 Coordonnées dans une base finie

Soit (𝑒1,… , 𝑒𝑛) une base d’un 𝕂-espace vectoriel E. Soit 𝑥 ∈ E. On appelle coordonnées de 𝑥 dans la base (𝑒1,… , 𝑒𝑛)

l’unique 𝑛-uplet (λ1,… , λ𝑛) ∈ 𝕂𝑛 tel que 𝑥 =
𝑛
∑
𝑖=1

λ𝑖𝑒𝑖.

Définition 1.7 Coordonnées dans une base quelconque

Soit (𝑒𝑖)𝑖∈I une base d’un 𝕂-espace vectoriel E. Soit 𝑥 ∈ E. On appelle coordonnées de 𝑥 dans la base (𝑒𝑖)𝑖∈I l’unique
famille presque nulle (λ𝑖)𝑖∈I ∈ 𝕂(I) telle que 𝑥 = ∑

𝑖∈I
λ𝑖𝑒𝑖.

Proposition 1.4 Base d’une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels d’un 𝕂-espace vectoriel E. On suppose qu’il existe une base ℱ de F et une
base 𝒢 de G. Alors la famille ℬ obtenue par concaténation des bases ℱ et 𝒢 est une base de F + G si et seulement si F et
G sont en somme directe.
Dans ce cas, ℬ est dite base adaptée à la somme directe F ⊕ G.

Attention!� Il est essentiel que F et G soient en somme directe. En effet, dans ℝ3, soit P le plan vectoriel d’équation
𝑥 = 0 etQ le plan vectoriel d’équation 𝑦 = 0. Il est clair que ((0, 1, 0), (0, 0, 1)) est une base de P et que ((1, 0, 0), (0, 0, 1))

est une base Q. Or P et Q ne sont pas en somme directe puisque P ∩ Q est la droite vectorielle d’équations {
𝑥 = 0
𝑦 = 0

. Et

on voit bien que ((0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 0, 1)) n’est pas une base puisqu’elle contient deux fois le même vecteur.

1.5 Cas particulier de 𝕂𝑛

Définition 1.8 Famille échelonnée de vecteurs de 𝕂𝑛

Soit (𝑢1,… , 𝑢𝑝) une famille de vecteurs de 𝕂𝑛. Pour tout 𝑖 ∈ ⟦1, 𝑝⟧, on note 𝑎𝑖 (resp. 𝑏𝑖) le nombre de zéros initiaux
(resp. terminaux) dans le vecteur 𝑢𝑖. On dit que la famille (𝑢1,… , 𝑢𝑝) est échelonnée si une des suites finies (𝑎1,… , 𝑎𝑛)
ou (𝑏1,… , 𝑏𝑛) est strictement monotone.

Exemple 1.12

Les vecteurs (2, 3, 1, 2), (−2, 1, 0, 0) et (1, 0, 0, 0) forment une famille échelonnée de ℝ4.
Les vecteurs (3, 2, 1, −1), (0, 2, −1, 4), (0, 0, 2, 3) et (0, 0, 0, 0) forment une famille échelonnée de ℝ4.

Proposition 1.5 Liberté d’une famille échelonnée

Une famille échelonnée de 𝕂𝑛 est libre si et seulement si elle ne comporte pas le vecteur nul.
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Proposition 1.6

Toute famille de 𝕂𝑛 peut être transformée à l’aide des opérations du pivot de Gauss en une famille échelonnée.

Méthode Montrer qu’une famille de 𝕂𝑛 est libre ou liée

Il suffit d’écrire la matrice dont les colonnes sont les vecteurs de la famille et de se ramener à une famille échelonnée en
utilisant le pivot de Gauss sur les colonnes. Si le vecteur nul apparaît, c’est que la famille est liée. Sinon, elle est libre.

Exemple 1.13

Montrer que la famille ((1, 2, 1), (1, 3, 2), (1, 1, 0)) est liée.
Montrer que la famille ((2, 1, 3, 4), (1, 3, 2, 0), (2, 3, 1, −1)) est libre.

Méthode Déterminer une base d’un sous-espace vectoriel de 𝕂𝑛

Soit F un sous-espace vectoriel de 𝕂𝑛.

• Si F est donné sous forme cartésienne (i.e. à l’aide d’un système d’équations linéaires), la méthode «mettre sous
forme d’un vect» vu dans le chapitre Espaces vectoriels fournit une base de F.

• Si F est donné sous forme paramétrique (i.e. à l’aide d’une famille génératrice), la méthode du pivot de Gauss
fournit une base de F après suppression des éventuels vecteurs nuls.

2 Dimension d’un espace vectoriel

Définition 2.1 Dimension finie

On dit qu’un espace vectoriel est de dimension finie s’il possède une famille génératrice finie.

Exemple 2.1

Pour 𝑛 ≥ 1, 𝕂𝑛 est de dimension finie puisque sa base canonique est une famille génératrice finie.

Exemple 2.2

𝕂[X] n’est pas de dimension finie. En effet, supposons qu’il admette une famille génératrice finie (P1,… , P𝑛). Posons
𝑑 = max

1≤𝑖≤𝑛
degP𝑖. Alors X𝑑+1 n’est pas une combinaison linéaire des P𝑖.

2.1 Existence de bases

Théorème 2.1

Soit E un 𝕂-espace vectoriel de dimension finie. Soient ℒ une famille libre finie de E et 𝒢 une famille génératrice finie
de E. Alors on peut compléter ℒ en une base de E en lui ajoutant des vecteurs de 𝒢.
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Corollaire 2.1 Existence de bases

Tout 𝕂-espace vectoriel de dimension finie possède une base finie.

Corollaire 2.2 Théorème de la base incomplète/extraite

Soit E un 𝕂-espace vectoriel de dimension finie.

(i) On peut compléter toute famille libre finie de E en une base de E.

(ii) On peut extraire de toute famille génératrice finie de E une base de E.

Exemple 2.3

Soit F = vect((1, −5, 7), (2, 6, 8), (3, 1, 15), (1, 11, 1)). Alors ((1, −5, 7), (2, 6, 8)) est une base de F.

Remarque. Si on admet l’axiome du choix, les théorèmes précédents restent vraie en dimension infinie quitte à considérer
des familles infinies.

2.2 Définition de la dimension

Lemme 2.1

Soit E un 𝕂-espace vectoriel de dimension finie possédant une famille génératrice à 𝑛 vecteurs. Alors toute famille libre
de E comporte au plus 𝑛 vecteurs.

Théorème 2.2 Dimension

Soit E un 𝕂-espace vectoriel de dimension finie. Toutes les bases de E ont même nombre d’éléments. On appelle cet
entier la dimension de E (sur 𝕂) et on le note dimE.

Remarque. La dimension de l’espace nul est 0.

Remarque. On appelle droite vectorielle un espace vectoriel de dimension 1 et plan vectoriel un espace vectoriel de dimen-
sion 2.

Méthode Déterminer la dimension d’un espace vectoriel

Pour déterminer la dimension d’un espace vectoriel, il suffit de déterminer une base de E. Son nombre d’éléments donnera
la dimension.

Exemple 2.4

• L’ensemble des solutions d’une équation différentielle linéaire homogène d’ordre 1 est une droite vectorielle.

• L’ensemble des solutions d’une équation différentielle linéaire homogène d’ordre 2 à coefficients constants est un
plan vectoriel.

• L’ensemble des suites réelles vérifiant une relation de récurrence linéaire homogène d’ordre 2 à coefficients constants
est un plan vectoriel.
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Exemple 2.5

• dim𝕂𝑛 = 𝑛.

• dim𝕂𝑛[X] = 𝑛 + 1.

• 𝕂[X] est de dimension infinie.

Remarque. Un ensemble E peut être muni d’une structure d’espace vectoriel pour différents corps de base. La dimension
peut alors différer suivant le corps de base. En cas d’ambiguïté, la dimension d’un espace vectoriel E pour le corps de base 𝕂
est notée dim𝕂 E.

Exemple 2.6

dimℂℂ = 1 et dimℝℂ = 2.

Exercice 2.1

Soit E un ℂ-espace vectoriel de dimension finie. Montrer que E peut être muni d’une structure de ℝ-espace vectoriel et
montrer que dimℝ E = 2 dimℂ E.

Corollaire 2.3

Soit E un 𝕂-espace vectoriel de dimension finie 𝑛.

(i) Toute famille libre de E possède au plus 𝑛 vecteurs.

(ii) Toute famille génératrice de E possède au moins 𝑛 vecteurs.

(iii) Toute famille possédant strictement plus de 𝑛 vecteurs est liée.

Attention!� Les réciproques sont fausses.

• Une famille d’un espace vectoriel de dimension 𝑛 possédant moins de 𝑛 vecteurs n’est pas forcément libre.

• Une famille d’un espace vectoriel de dimension 𝑛 possédant plus de 𝑛 vecteurs n’est pas forcément génératrice.

• Une famille liée peut possèder 𝑛 vecteurs ou moins.

Corollaire 2.4

Soit E un espace vectoriel de dimension 𝑛 et ℬ une famille de 𝑛 vecteurs. Les propositions suivantes sont équivalentes :

(i) ℬ est une famille génératrice de E ;

(ii) ℬ est une famille libre de E ;

(iii) ℬ est une base de E.
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Méthode Prouver qu’une famille est une base en dimension finie

Soit E un espace vectoriel de dimension 𝑛 etℬ une famille à 𝑛 vecteurs. Pour prouver queℬ est une base de E, pas besoin
de prouver que ℬ est génératrice et libre. Le théorème précédent nous dit qu’il suffit de montrer que ℬ est génératrice ou
libre (en pratique, on montre plus souvent la liberté). Le travail est donc divisé par deux si on connaît la dimension de
l’espace vectoriel.

Exemple 2.7

La famille ((0, 1, 2), (1, 2, 0), (2, 0, 1)) est une base de ℝ3.

Proposition 2.1 Dimension d’un produit

Soient E1,… , E𝑝 des 𝕂-espaces vectoriels de dimension finie. Alors
𝑝
∏
𝑘=1

E𝑘 est de dimension finie et dim (
𝑝
∏
𝑘=1

E𝑘) =
𝑝
∑
𝑘=1

dimE𝑘.

3 Dimension et sous-espaces vectoriels

3.1 Dimension d’un sous-espace vectoriel

Proposition 3.1 Dimension d’un sous-espace vectoriel

Soit F un sous-espace vectoriel d’un espace vectoriel de dimension finie E. Alors F est de dimension finie et dimF ≤
dimE. De plus, dimF = dimE si et seulement si E = F.

Exemple 3.1

Les sous-espaces vectoriels de ℝ2 sont le sous-espace nul, les droites vectorielles et ℝ2.
Les sous-espaces vectoriels de ℝ3 sont le sous-espace nul, les droites vectorielles, les plans vectoriels et ℝ3.

Exemple 3.2 Équations différentielles linéaires homogènes d’ordre 1

Soit (E) l’équation différentielle 𝑦′ + 𝑎𝑦 = 0 où 𝑎 ∈ 𝒞(I, 𝕂). On note 𝒮 l’ensemble des solutions de (E) sur I à valeurs
dans 𝕂. Alors 𝒮 est un sous-espace vectoriel de 𝕂I de dimension 1.

Exemple 3.3 Équations différentielles linéaires homogènes d’ordre 2 à coefficients constants

Soient (𝑎, 𝑏) ∈ 𝕂2 et (E) l’équation différentielle 𝑦″ + 𝑎𝑦′ + 𝑏𝑦 = 0. On note 𝒮 l’ensemble des solutions de (E) sur ℝ à
valeurs dans 𝕂. Alors 𝒮 est un sous-espace vectoriel de 𝕂ℝ de dimension 2.

Exemple 3.4 Récurrences linéaires homogènes

Soient (𝑎, 𝑏) ∈ 𝕂2 et 𝒮 l’ensemble des suites (𝑢𝑛)𝑛∈ℕ à valeurs dans 𝕂 telles que 𝑢𝑛+2 + 𝑎𝑢𝑛+1 + 𝑏𝑢𝑛 = 0 pour tout
𝑛 ∈ ℕ. Alors 𝒮 est un sous-espace vectoriel de 𝕂ℕ de dimension 2.
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Méthode Montrer que deux sous-espaces vectoriels sont égaux

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel E. Pour montrer que F = G, il suffit de montrer que
F ⊂ G (ou G ⊂ F) et que dimF = dimG. Travail divisé par deux.

Exercice 3.1

Soient 𝑎 = (1, 2, 1), 𝑏 = (1, 3, 2), 𝑐 = (1, 1, 0) et 𝑑 = (3, 8, 5) des vecteurs de ℝ3. Montrer que vect(𝑎, 𝑏) = vect(𝑐, 𝑑).

Définition 3.1 Hyperplan

Soit E un espace vectoriel de dimension 𝑛. On appelle hyperplan de E tout sous-espace vectoriel de E de dimension
𝑛 − 1.

3.2 Dimension d’une somme

Proposition 3.2 Existence d’un supplémentaire

Soit F un sous-espace vectoriel d’un espace vectoriel E de dimension finie. Alors F possède un supplémentaire dans E.

Attention!� On rappelle qu’il n’y a pas unicité du supplémentaire.

Remarque. Si on admet l’axiome du choix, l’existence d’un supplémentaire est également garantie en dimension infinie.

Proposition 3.3 Dimension d’une somme directe de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels de dimension finie en somme directe d’un espace vectoriel E. Alors F⊕G est
de dimension finie et dimF ⊕ G = dimF + dimG.

Proposition 3.4 Formule de Grassmann

Soient F et G deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E. Alors F+G est de dimension finie
et

dimF + G = dimF + dimG − dimF ∩ G

Exercice 3.2

Soient F et G deux sous-espaces vectoriels de dimension 3 de ℝ5. Montrer que F ∩ G ≠ {0}.

Corollaire 3.1 Caractérisation d’une somme directe

Soient F etG deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E. Alors F etG sont en somme directe
si et seulement si dim(F + G) = dimF + dimG.
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Corollaire 3.2 Caractérisation de la supplémentarité

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel de dimension finie E. Alors F et G sont supplémentaires
dans E si et seulement si au moins deux des trois assertions suivantes sont vraies :

(i) dimF + dimG = dimE.

(ii) F ∩ G = {0E}.

(iii) F + G = E.

Méthode Prouver que deux sous-espaces vectoriels sont supplémentaires

Soient F et G deux sous-espaces vectoriels d’un espace vectoriel de dimension finie E. Si on connaît les dimensions de
E, F et G, pour prouver que F et G sont supplémentaires dans E, il suffit de vérifier que dimF + dimG = dimE et de
montrer, au choix, que F ∩ G = {0E} ou F + G = E (en pratique, on montre plus souvent que la somme est directe).
Travail divisé par deux grâce à la dimension.

Exercice 3.3

Soient F = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥 + 2𝑦 + 3𝑧 = 0} et G = vect((0, 1, 0)). Montrer que F et G sont supplémentaires dans ℝ3.

4 Rang d’une famille de vecteurs

Définition 4.1 Rang d’une famille de vecteurs

Soit E un 𝕂-espace vectoriel (pas nécessairement de dimension finie). Soit ℱ une famille finie de vecteurs de E. Alors
vect(ℱ) est de dimension finie et sa dimension est appelée le rang de ℱ noté rgℱ.

Proposition 4.1

Le rang d’une famille finie de vecteurs est invariant par opérations de pivot de Gauss sur cette famille.

Remarque. Si ℱ est une famille de 𝑝 vecteurs, alors rgℱ ≤ 𝑝.
Si E est de dimension finie 𝑛, rgℱ ≤ 𝑛.
Si ces deux conditions sont réunies, on a donc rgℱ ≤ min(𝑛, 𝑝).

Exercice 4.1

Soient ℱ1 et ℱ2 deux familles finies d’un espace vectoriels E de dimension finie. Montrer que :

max(rgℱ1, rgℱ2) ≤ rg(ℱ1 ∪ ℱ2) ≤ rgℱ1 + rgℱ2

Proposition 4.2 Rang, liberté, génération

Soit ℱ une famille finie de 𝑝 vecteurs d’un espace vectoriel E.
Alors rgℱ = cardℱ si et seulement si ℱ est libre.
Si de plus E est de dimension finie, rgℱ = dimE si et seulement si ℱ engendre E.
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Méthode Rang d’une famille de 𝕂𝑛

Soit ℱ une famille de 𝕂𝑛. On applique la méthode du pivot de Gauss pour déterminer une base de vect(ℱ). Son cardinal
est est le rang de ℱ.

Exercice 4.2

Déterminer le rang de la famille de vecteurs de ℝ4 :

((1, 2, −3, 0), (−4, −6, 12, 2), (−3, −6, 12, 3), (−2, −4, 6, 0), (−2, −2, 3, 1))
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