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Équations différentielles

𝕂 désigne les corps ℝ ou ℂ.

1 Généralités sur les équations différentielles

1.1 Notion d’équation différentielle

Définition 1.1

On appelle équation différentielle une équation dont l’inconnue est une fonction de ℝ dans 𝕂 et qui fait intervenir cette
fonction ainsi que ces dérivées successives.
On appelle ordre de cette équation différentielle l’ordre maximal de dérivation de la fonction inconnue.

Exemple 1.1

𝑦″ = 𝑥2𝑒𝑦 + 1 est une équation différentielle d’ordre 2 dont l’inconnue est une fonction 𝑦.
Cette écriture est un abus de notation, il faut comprendre 𝑦″(𝑥) = 𝑥2𝑒𝑦(𝑥)+1 pour tout 𝑥 dans un intervalle à déterminer.

Résolution d’une équation différentielle

Résoudre une équation différentielle consiste à rechercher :

• un intervalle I,

• une fonction 𝑦 suffisamment dérivable et vérifiant l’équation différentielle sur I.

Exemple 1.2

Résoudre l’équation différentielle 𝑦″ = 𝑥2𝑒𝑦+1 consiste à déterminer un intervalle I et une fonction 𝑦 deux fois dérivable
sur I tels que

∀𝑥 ∈ I, 𝑦″(𝑥) = 𝑥2𝑒𝑦(𝑥) + 1

Définition 1.2 Forme résolue ou implicite

Une équation différentielle est dite résolue si elle est de la forme 𝑦(𝑛) = F(𝑥, 𝑦, 𝑦′,… , 𝑦(𝑛−1)). Dans le cas contraire, elle
est dite implicite.

Exemple 1.3

L’équation différentielle 𝑦″ = 𝑥2𝑒𝑦 + 1 est résolue.

Exemple 1.4

L’équation différentielle 𝑥𝑦′ + sin 𝑦 = 𝑒𝑥 n’est pas résolue mais elle est équivalente sur ℝ∗
+ à l’équation différentielle

𝑦′ = −1𝑥 sin 𝑦 + 𝑒𝑥
𝑥 qui est résolue.
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Exemple 1.5

L’équation différentielle 𝑦″2 + 𝑦′3 + 𝑦 = 0 ne peut pas se mettre sous forme résolue.

Conditions initiales

On peut aussi rechercher des solutions qui vérifient certaines conditions en un point 𝑥0 :

𝑦(𝑥0) = 𝑦0 𝑦′(𝑥0) = 𝑦′0 𝑦″(𝑥0) = 𝑦″0 …

On appelle ce type de condition des conditions initiales.

Exemple 1.6

La fonction tan est solution de l’équation différentielle 𝑦′ − 𝑦2 = 1 sur ]−π2 ,
π
2 [ et vérifie la condition initiale 𝑦(0) = 0.

Exemple 1.7

La fonction ch est solution de l’équation différentielle 𝑦′2 − 𝑦2 = −1 sur ℝ et vérifie la condition initiale 𝑦(0) = 1.

Exemple 1.8

La fonction 𝑥 ↦ 𝑥 ln𝑥 est solution de l’équation différentielle 𝑥𝑦′−𝑦 = 𝑥 surℝ∗
+ et vérifie la condition initiale 𝑦(1) = 0.

Définition 1.3 Problème de Cauchy

On appelle problème de Cauchy la donnée d’une équation différentielle résolue d’ordre 𝑛,

𝑦(𝑛) = F(𝑥, 𝑦, 𝑦′,… , 𝑦(𝑛−1))

et de 𝑛 conditions initiales

𝑦(𝑥0) = 𝑦0 𝑦′(𝑥0) = 𝑦′0 𝑦″(𝑥0) = 𝑦″0 … 𝑦(𝑛−1)(𝑥0) = 𝑦(𝑛−1)0

Le problème est qu’on ne dispose pas de méthode de résolution générale pour toutes les équations différentielles.

1.2 Équations différentielles linéaires
Néanmoins, il existe une classe d’équations différentielles que l’on sait résoudre. Ce sont les équations différentielles li-

néaires.
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Définition 1.4 Équation différentielle linéaire

On appelle équation différentielle linéaire toute équation de la forme :

(E) 𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) +⋯+ 𝑎1𝑦′ + 𝑎0𝑦 = 𝑏

où 𝑎0, 𝑎1,… , 𝑎𝑛 et 𝑏 sont des fonctions.
La fonction 𝑏 est appelé le second membre. Si 𝑏 est nulle, alors l’équation est dite homogène ou sans second membre.
L’équation différentielle

(EH) 𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) +⋯+ 𝑎1𝑦′ + 𝑎0𝑦 = 0

est appelée équation différentielle homogène associée à (E).
Si 𝑎0, 𝑎1,… , 𝑎𝑛 sont des constantes, on parle d’équation différentielle linéaire à coefficients constants.

Exemple 1.9

L’équation différentielle (𝑥2 + 1)𝑦″ = 𝑒𝑥𝑦 + arctan𝑥 est une équation différentielle linéaire d’ordre 2 et son équation
différentielle homogène associée est (𝑥2 + 1)𝑦″ = 𝑒𝑥𝑦.

L’appellation linéaire provient de la propriété suivante.

Théorème 1.1 Principe de superposition

Si 𝑦1 est une solution de l’EDL
𝑛
∑
𝑘=0

𝑎𝑘𝑦(𝑘) = 𝑏1 et 𝑦2 une solution de l’EDL
𝑛
∑
𝑘=0

𝑎𝑘𝑦(𝑘) = 𝑏2, alors λ1𝑦1 + λ2𝑦2 est une

solution de l’EDL
𝑛
∑
𝑘=0

𝑎𝑘𝑦(𝑘) = λ1𝑏1 + λ2𝑏2 pour tout (λ1, λ2) ∈ 𝕂2.

Remarque. Dans le cas où 𝑏1 = 𝑏2 = 0, on a le résultat suivant.

Si 𝑦1 et 𝑦2 sont solutions de (E) ∶
𝑛
∑
𝑘=0

𝑎𝑘𝑦(𝑘) = 0, alors toute combinaison linéaire de 𝑦1 et 𝑦2 est également solution de (E).

Les équations différentielles linéaires jouissent aussi de la propriété fondamentale suivante.

Théorème 1.2 Structure de l’ensemble des solutions

Si ̄𝑦 est une solution de l’équation différentielle
𝑛
∑
𝑘=0

𝑎𝑘𝑦(𝑘) = 𝑏, alors les solutions de cette équation différentielle sont les

fonctions de la forme ̄𝑦 + 𝑦H où 𝑦H décrit l’ensemble des solutions de l’équation homogène associée.

2 Équations différentielles linéaires du premier ordre

2.1 Équations sans second membre

Théorème 2.1 Solutions d’une EDL sans second membre

Soient I un intervalle, 𝑎 ∈ 𝒞(I, 𝕂) et A une primitive de 𝑎 sur I. L’ensemble des solutions de l’équation différentielle
𝑦′ + 𝑎𝑦 = 0 est l’ensemble des fonctions λ𝑒−A où λ ∈ 𝕂.

Remarque. On dit que l’ensemble des solutions a une structure de droite vectorielle : toutes les solutions sont proportion-
nelles à 𝑒−A. En particulier, il existe une infinité de solutions.
La donnée d’une condition initiale permet de fixer λ.
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L’exemple suivant est à connaître.

Exemple 2.1

Soit 𝑎 ∈ ℂ. La fonction 𝑥 ↦ 𝑒𝑎𝑥 est l’unique solution de l’équation différentielle

𝑦′ − 𝑎𝑦 = 0 avec la condition initiale 𝑦(0) = 1

Exemple 2.2

Les solutions de (1 + 𝑥2)𝑦′ − 𝑦 = 0 sont les fonctions 𝑥 ↦ λ𝑒arctan𝑥.

Méthode Résolution non rigoureuse

D’où a-t-on sorti le 𝑒−A du théorème précédent ? On va voir qu’on peut le retrouver grâce à une méthode pratique mais
non rigoureuse. On va supposer que les solutions de l’équation différentielle 𝑦′ + 𝑎𝑦 = 0 ne s’annulent pas, ce qu’on ne
peut pas savoir a priori. On peut alors écrire :

𝑦′

𝑦 = −𝑎

On reconnaît en 𝑦
′

𝑦 la dérivée de ln |𝑦| (attention, on suppose aussi implicitement que 𝑦 est à valeurs réelles). En intégrant,
on a donc :

ln |𝑦| = −A + C

où C ∈ ℝ est une constante. On passe à l’exponentielle de sorte que |𝑦| = 𝑒C𝑒−A. 𝑒C est une constante positive qu’on
peut noter λ. 𝑦 est continue et ne s’annule pas donc elle est de signe constant. On peut donc se débarrasser de la valeur
absolue et dire que 𝑦 est de la forme λ𝑒−A avec α ∈ ℝ.

Attention!� Cette méthode est non rigoureuse et, pour résoudre une équation différentielle, il faut invoquer le théorème
précédent.

Exercice 2.1

Résoudre l’équation différentielle 𝑦′ = 𝑦 tan𝑥. On pensera notamment à définir auparavant l’intervalle sur lequel on
cherche les solutions.

Exercice 2.2 Équation fonctionnelle des exponentielles

Montrer que les fonctions dérivables 𝑓∶ ℝ → ℂ qui vérifient l’équation fonctionnelle :

∀𝑥, 𝑦 ∈ ℝ, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦)

sont soit la fonction nulle soit les fonctions 𝑥 ↦ 𝑒𝑎𝑥 où 𝑎 ∈ ℂ.

Remarque. Les exponentielles sont donc les seules fonctions dérivables deℝ dansℂ qui transforment les sommes en produits.

Exercice 2.3 Équation fonctionnelle du logarithme

Déterminer les fonctions dérivables 𝑓∶ ℝ∗
+ → ℝ qui vérifient l’équation fonctionnelle :

∀𝑥, 𝑦 ∈ ℝ∗
+, 𝑓(𝑥𝑦) = 𝑓(𝑥) + 𝑓(𝑦)
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2.2 Équations avec second membre

Théorème 2.2 Existence d’une solution

Soient I un intervalle et (𝑎, 𝑏) ∈ 𝒞(I, 𝕂)2. L’équation différentielle (E) ∶ 𝑦′ + 𝑎𝑦 = 𝑏 admet toujours une solution sur I.
De plus, si ̄𝑦 est une solution de (E), les solutions de (E) sont les fonctions ̄𝑦 + 𝑦H où 𝑦H décrit l’ensemble des solutions
de l’équation différentielle homogène associée à (E).

Le problème de Cauchy {
𝑦′ + 𝑎𝑦 = 𝑏
𝑦(𝑥0) = 𝑦0

où 𝑥0 ∈ I et 𝑦0 ∈ 𝕂 admet une unique solution.

Remarque. Toute solution est de classe 𝒞1.

Méthode Résolution d’une EDL avec second membre

Soit à résoudre l’EDL 𝑦′ + 𝑎𝑦 = 𝑏 avec 𝑎, 𝑏 ∈ 𝒞(I, 𝕂). On note A une primitive de 𝑎.

Résolution de l’EDL homogène associée La solution générale de l’EDL homogène est de la forme λ𝑒−A où λ ∈ 𝕂 est
une constante.

Recherche d’une solution particulière Soit il existe une solution particulière évidente 𝑦0. Soit on cherche une solution
particulière sous la forme ̄𝑦 = λ𝑒−A où λ est une fonction. Autrement dit, on remplace la constante λ de la solution
générale de l’EDL homogène par une fonction : cette méthode s’appelle variation de la constante. On remplace
donc 𝑦 par λ𝑒−A dans l’EDL et on obtient une équation différentielle vérifiée par λ (plus exactement, λ′ = 𝑏𝑒A).

Résolution de l’EDL initiale La solution générale de l’EDL initiale est de la forme ̄𝑦 + 𝑦 où 𝑦 est la solution générale
de l’EDL homogène.

Attention!� On vérifiera toujours si possible que les solutions trouvées sont bien solutions de l’équation différentielle
initiale.

Exercice 2.4

Résoudre l’EDL 𝑥𝑦′ + 𝑦 = 𝑥2 sur ℝ∗
+.

Exercice 2.5

Soit 𝑎 et 𝑏 deux fonctions impaires continues sur ℝ. Soit 𝑓 une solution de l’équation différentielle 𝑦′ +𝑎𝑦 = 𝑏. Montrer
que 𝑓 est paire.

Exercice 2.6

Soit 𝑎 et 𝑏 deux fonctions de classe 𝒞∞ sur un intervalle I. Soit 𝑓 une solution de l’équation différentielle 𝑦′ + 𝑎𝑦 = 𝑏.
Montrer que 𝑓 est de classe 𝒞∞ sur I.

3 Équations différentielles linéaires du second ordre à coefficients constants

3.1 Équations sans second membre
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Définition 3.1 Équation caractéristique

Soit (𝑎, 𝑏, 𝑐) ∈ 𝕂∗ × 𝕂2. On appelle équation caractéristique associée à l’équation différentielle 𝑎𝑦″ + 𝑏𝑦 + 𝑐𝑦 = 0
l’équation 𝑎X2 + 𝑏X + 𝑐 = 0.

Exemple 3.1

L’équation caractéristique associée à l’EDL 3𝑦″ − 4𝑦′ + 5𝑦 = 0 est 3X2 − 4X + 5 = 0.

Le théorème suivant fait le lien entre les solutions de l’équation caractéristique et les solutions de l’EDL.

Théorème 3.1 Solutions d’une EDL sans second membre (cas complexe)

Soit (𝑎, 𝑏, 𝑐) ∈ ℂ∗ × ℂ2. On considère l’équation différentielle 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0 dont on recherche les solutions à
valeurs complexes.

• Si l’équation caractéristique possède deux racines distinctes 𝑟1 et 𝑟2, alors les solutions de l’EDL sont les fonctions
𝑥 ∈ ℝ ↦ λ1𝑒𝑟1𝑥 + λ2𝑒𝑟2𝑥 avec (λ1, λ2) ∈ ℂ2.

• Si l’équation caractéristique possède une racine double 𝑟, alors les solutions de l’EDL sont les fonctions 𝑥 ∈ ℝ ↦
(λ𝑥 + μ)𝑒𝑟𝑥 avec (λ, μ) ∈ ℂ2.

Théorème 3.2 Solutions d’une EDL sans second membre (cas réel)

Soit (𝑎, 𝑏, 𝑐) ∈ ℝ∗ × ℝ2. On considère l’équation différentielle 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0 dont on recherche les solutions à
valeurs réelles.

• Si l’équation caractéristique possède deux racines réelles distinctes 𝑟1 et 𝑟2, alors les solutions de l’EDL sont les
fonctions 𝑥 ∈ ℝ ↦ λ1𝑒𝑟1𝑥 + λ2𝑒𝑟2𝑥 avec (λ1, λ2) ∈ ℝ2.

• Si l’équation caractéristique possède une racine double 𝑟, alors les solutions de l’EDL sont les fonctions 𝑥 ∈ ℝ ↦
(λ𝑥 + μ)𝑒𝑟𝑥 avec (λ, μ) ∈ ℝ2.

• Si l’équation caractéristique possède deux racines complexes conjuguées 𝑟 ± 𝑖ω, alors les solutions de l’EDL sont
les fonctions 𝑥 ∈ ℝ ↦ (λ sinω𝑥 + μ cosω𝑥)𝑒𝑟𝑥 avec (λ, μ) ∈ ℝ2. Ces fonctions peuvent également s’écrire
𝑥 ∈ ℝ ↦ λ sin(ω𝑥 + φ) ou 𝑥 ∈ ℝ ↦ λ cos(ω𝑥 + φ) avec (λ, φ) ∈ ℝ2.

Exemple 3.2

Soit ω ∈ ℝ.
Les solutions réelles de l’équation différentielle 𝑦″ − ω2𝑦 = 0 sont les fonctions 𝑡 ∈ ℝ ↦ λ𝑒ω𝑡 + μ𝑒−ω𝑡.
Les solutions réelles de l’équation différentielle 𝑦″ + ω2𝑦 = 0 sont les fonctions 𝑡 ∈ ℝ ↦ λ cos(ω𝑡) + μ sin(ω𝑡).

3.2 Équations avec second membre
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Théorème 3.3 Existence d’une solution

Soient 𝑎, 𝑏, 𝑐 ∈ 𝕂 et 𝑑 ∈ 𝒞(I, 𝕂). L’équation différentielle (E) ∶ 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑑 admet toujours une solution sur I.
De plus, si ̄𝑦 est une solution de (E), les solutions de (E) sont les fonctions ̄𝑦 + 𝑦H où 𝑦H décrit l’ensemble des solutions
de l’équation différentielle homogène associée à (E).

Le problème de Cauchy {
𝑎𝑦′ + 𝑏𝑦 + 𝑐𝑦 = 𝑑

𝑦(𝑥0) = 𝑦0
𝑦′(𝑥0) = 𝑦′0

où 𝑥0 ∈ I et (𝑦0, 𝑦′0) ∈ 𝕂2 admet une unique solution.

3.3 Résolution de certaines EDL à coefficients constants
Dans la suite, P désigne un polynôme à coefficients dans 𝕂 et 𝑘 ∈ 𝕂.

Résolution de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥)𝑒𝑘𝑥

On cherche une solution particulière sous la forme 𝑥𝑚Q(𝑥)𝑒𝑘𝑥 où Q est un polynôme à coefficients dans 𝕂 de même
degré que P et :

• 𝑚 = 0 si 𝑘 n’est pas racine de l’équation caractéristique ;

• 𝑚 = 1 si 𝑘 est racine simple de l’équation caractéristique ;

• 𝑚 = 2 si 𝑘 est racine double de l’équation caractéristique.

Le programme stipule que vous n’avez à connaître la méthode dans le seul cas où P est constant.

Résolution de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) cos 𝑘𝑥 ou 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) sin 𝑘𝑥 avec 𝕂 = ℝ

On cherche une solution particulière complexe 𝑦ℂ de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥)𝑒𝑖𝑘𝑥 en utilisant la méthode précédente.
Comme cos 𝑘𝑥 = Re(𝑒𝑖𝑘𝑥) et que sin 𝑘𝑥 = Im(𝑒𝑖𝑘𝑥), Re(𝑦ℂ) et Im(𝑦ℂ) sont des solutions particulières respectives de
𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) cos 𝑘𝑥 et 𝑦′ + 𝑎𝑦 = P(𝑥) sin 𝑘𝑥.

Résolution de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) ch 𝑘𝑥 ou 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) sh 𝑘𝑥 avec 𝕂 = ℝ

On cherche des solutions particulières 𝑦+ et 𝑦− de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥)𝑒𝑘𝑥 et 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥)𝑒−𝑘𝑥 en utilisant
la méthode précédente.

Comme ch 𝑘𝑥 = 𝑒𝑘𝑥 + 𝑒−𝑘𝑥
2 et que sh 𝑘𝑥 = 𝑒𝑘𝑥 − 𝑒−𝑘𝑥

2 ,
𝑦+ + 𝑦−

2 et
𝑦+ − 𝑦−

2 sont des solutions particulières respectives
de 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) ch 𝑘𝑥 ou 𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = P(𝑥) sh 𝑘𝑥 par principe de superposition.

Attention!� On vérifiera toujours si possible que les solutions trouvées sont bien solutions de l’équation différentielle
initiale.

Exercice 3.1

Résoudre les EDL suivantes :

1. 𝑦″ − 𝑦 = 𝑥2 + 1 − 𝑒𝑥 ;

2. 𝑦″ + 𝑦′ + 𝑦 = 𝑒𝑥 cos𝑥.

4 Compléments

4.1 Problèmes de raccord
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Problèmes de raccord

Il s’agit de résoudre des équations différentielles du type 𝑎𝑦′ + 𝑏𝑦 = 𝑐 où 𝑎, 𝑏, 𝑐 sont des fonctions continues sur un
intervalle I et où 𝑎 peut s’annuler sur l’intervalle I. La méthode est la suivante.

• On résout sur les plus grands intervalles ouverts sur lesquels 𝑎 ne s’annule pas (on se ramène à 𝑦′ + 𝑏
𝑎𝑦 =

𝑐
𝑎 ). Il

apparaît alors des constantes pour chacun de ces intervalles.

• On étudie la continuité d’une éventuelle solution en les points de raccord de ces intervalles pour voir si cela implique
des conditions sur ces constantes.

• On étudie la dérivabilité d’une éventuelle solution en les points de raccord de ces intervalles pour voir si cela
implique à nouveau des conditions sur ces constantes.

• On vérifie que si les conditions sur les constantes sont respectées, on a bien une solution (c’est toujours le cas en
fait).

Exercice 4.1

Résoudre sur ℝ les équations différentielles :

• 𝑥𝑦′ + 𝑦 = 𝑥3

• 𝑥𝑦′ − 𝑦 = 0

• 𝑥2𝑦′ + 𝑦 = 0

• 𝑥𝑦′ − 2𝑦 = 0

4.2 Changement de variable
On se contentera d’un exemple.

Exemple 4.1 Résolution sur ℝ∗
+ de l’équation différentielle (E) ∶ 𝑡2𝑦″ + 𝑡𝑦′ + 𝑦 = 0

Soit 𝑦 une fonction définie sur ℝ∗
+.

On effectue le changement de variable 𝑢 = ln 𝑡, c’est-à-dire qu’on définit une fonction 𝑧 par 𝑧(𝑢) = 𝑦(𝑡), ce qui n’est pas
très rigoureux.
Plus rigoureusement, on pose 𝑧(𝑢) = 𝑦(𝑒ᵆ) pour tout 𝑢 ∈ ℝ et on a donc également 𝑦(𝑡) = 𝑧(ln 𝑡) pour tout 𝑡 ∈ ℝ∗

+.
On remarque que 𝑧 est deux fois dérivable sur ℝ si et seulement si 𝑦 est deux fois dérivable sur ℝ∗

+. Et, dans ce cas, pour
tout 𝑡 ∈ ℝ∗

+

𝑦(𝑡) = 𝑧(ln 𝑡) 𝑦′(𝑡) = 1
𝑡 𝑧

′(ln 𝑡) 𝑦″(𝑡) = 1
𝑡2 (𝑧

″(ln 𝑡) − 𝑧′(ln 𝑡))

Par conséquent,
∀𝑡 ∈ ℝ∗

+, 𝑡2𝑦″(𝑡) + 𝑡𝑦′(𝑡) + 𝑦(𝑡) = 𝑧″(ln 𝑡) + 𝑧(ln 𝑡)

Ainsi
(∀𝑡 ∈ ℝ∗

+, 𝑡2𝑦″(𝑡) + 𝑡𝑦′(𝑡) + 𝑦(𝑡) = 0) ⟺ (∀𝑢 ∈ ℝ, 𝑧″(𝑢) + 𝑧(𝑢) = 0)

Donc 𝑦 est solution de (E) sur ℝ∗
+ si et seulement si 𝑧 est solution de 𝑧″ + 𝑧 = 0 sur ℝ.

Les solutions de cette dernière équation en 𝑧 sont les fonctions de la forme 𝑧 ∶ 𝑢 ∈ ℝ ↦ A cos𝑢 + B sin𝑢.
Donc, les solutions de (E) sont les fonctions de la forme 𝑦 ∶ 𝑡 ∈ ℝ∗

+ ↦ A cos(ln 𝑡) + B sin(ln 𝑡) avec (A, B) ∈ ℝ2.

4.3 Changement de fonction
On se contentera à nouveau d’un exemple.
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Exemple 4.2 Résolution sur ℝ∗
+ de l’équation différentielle (E ∶ 𝑥2𝑦2 − 𝑥𝑦′ − 3𝑦 = 0)

Remarquons déjà que cette équation différentielle est du premier ordre mais qu’elle n’est pas linéaire. La méthode usuelle
ne s’applique donc pas.
Pour simplifier, on cherchera les solutions ne s’annulant pas sur ℝ∗

+.
Soit donc 𝑦 une fonction ne s’annulant pas sur ℝ∗

+. On peut donc poser 𝑧 = 1
𝑦 et 𝑦 est dérivable sur ℝ∗

+ si et seulement

si 𝑧 l’est. De plus, dans ce cas, 𝑦′ = −𝑧
′

𝑧2 .

𝑥2𝑦2 − 𝑥𝑦′ − 3𝑦 = 0 ⟺ 𝑥𝑧′ − 3𝑧 = −𝑥2

On résout cette nouvelle équation différentielle en 𝑧 sur ℝ∗
+. Les solutions sont les fonctions 𝑥 ↦ 𝑥2 + λ𝑥3 où λ ∈ ℝ.

De plus, 𝑧 = 1
𝑦 ne s’annule pas non plus surℝ∗

+, ce qui n’est possible que si λ ≥ 0 (étudier les variations de 𝑥 ↦ 𝑥2+λ𝑥3).

Les solutions de (E) sur ℝ∗
+ ne s’y annulant pas sont donc les fonctions 𝑥 ↦ 1

𝑥2 + λ𝑥3 avec λ ≥ 0.

http://lgarcin.github.io 9

http://lgarcin.github.io

	Généralités sur les équations différentielles
	Notion d'équation différentielle
	Équations différentielles linéaires

	Équations différentielles linéaires du premier ordre
	Équations sans second membre
	Équations avec second membre

	Équations différentielles linéaires du second ordre à coefficients constants
	Équations sans second membre
	Équations avec second membre
	Résolution de certaines EDL à coefficients constants

	Compléments
	Problèmes de raccord
	Changement de variable
	Changement de fonction


