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EsPACES VECTORIELS

1 Définition et exemples fondamentaux

1.1 Définition

Définition 1.1 Espace vectoriel

Soient K un corps et E un ensemble muni d’une loi interne + et d’une loi externe . i.e. d’une application :

KXE — E
A,x) — Ax

On dit que (E, +,.) est un [K-espace vectoriel ou un espace vectoriel sur K si :
(i) (E, +) est un groupe commutatif (dont I’élément neutre Oy ou 0 est appelé le vecteur nul);
(ii) Distributivité de . sur + a gauche : V(A, w) € K2,Vx € E, (A + W).x = A.x + p.x;
(iii) Distributivité de . sur + a droite : VA € K,V(x,y) € B2, A.(x +y) = A.x + L.y;
(iv) Vx € E, 1ix.x = x;
v) V(A w) € K2,Vx € E, A.(u.x) = (Ap).x.

Les éléments de E sont appelés des vecteurs et les éléments de K sont appelés des scalaires. Le corps K est appelé le
corps de base de 1’espace vectoriel E.

REMARQUE. Dans la distributivité de + sur ., il s’agit de 1a loi + du corps K. Dans la distributivité de . sur +, il s’agit de la loi
+ du groupe E.

REMARQUE. Le . de laloi externe est trés souvent omis : si A € K et x € E, on note souvent Ax au lieu de A.x.

REMARQUE. On ne met pas de fleches sur les vecteurs des espaces vectoriels a moins que 1’on fasse de la géométrie dans le
plan ou dans I’espace.

REMARQUE. On parle souvent d’espace vectoriel sans préciser les lois + et .. On dit souvent «E est un K-espace vectoriel»
alors qu’en toute rigueur, on devrait dire «(E, +, .) est un K-espace vectoriel»».

REMARQUE. SiE est un K-espace vectoriel et si L est un sous-corps de K, alors E est aussi un L-espace vectoriel en considérant
la restrictionde laloi.a L X E.
Proposition 1.1 Reégles de calcul

Soit E un K-espace vectoriel.
1. V()\.,x) e KXE,Ax = O & ()\. =0koux = OE)

2. V(A x) e KX E,—(A.x) = (=A).x = A.(—x);

1.2 Exemples

Les espaces vectoriels sont partout.
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Exemple 1.1 Géométrie

Le plan vectoriel et I’espace vectoriel (ensemble des vecteurs du plan ou de 1’espace) sont des R-espaces vectoriels.

REMARQUE. Historiquement, le plan et I’espace ont été les prototypes d’espaces vectoriels. D’ailleurs, il nous sera tres utile
en pratique de représenter les vecteurs d’espaces vectoriels abstraits comme des vecteurs du plan et de 1’espace.

Exemple 1.2 Suites

2
Pour (1), (v,)) € (KN)", on pose (uy,) + (v,) = (uy, + V).
Pour (4, (u,,)) € K x KV, on pose A.(u,) = (Au,,).

Alors (KN, +,.) est alors un [K-espace vectoriel.

REMARQUE. CN est aussi un R-espace vectoriel.

Exemple 1.3 Fonctions

Soit X un ensemble.

Pour (f,g) € (KX)Z, onpose f+g:x €Xr f(x)+ g(x).
Pour (A, f) € K x KX, on pose A.f : x € X = Af(X).

Alors (KX, 4,.) est un [K-espace vectoriel.

REMARQUE. CX est aussi un R-espace vectoriel.

Exemple 1.4 Polynémes

Pour P = Z a, X" e K[X]etQ = Z b, X" € K[X], on pose P+ Q = Z (a, + by)X".
neN neN neN
PourA € KetP = Z a,X" € K[X], on pose A.P = Z Aa, X",

neN

nen
Alors (K[X], +, .) est un K-espace vectoriel.

REMARQUE. C[X] est aussi un R-espace vectoriel.

Exemple 1.5

Pour (X1, ..., X3)s W15 --- 5 Y0)) € (IK.”)Z, on pose (X1, ... s Xp) + W1y oo s Vn) = (X1 + Y1y oo s Xy + V).
Pour A € Ket (xg, ..., X,) € K", on pose A.(x}, ..., X,,) = (Axy, ..., AX,,).
Alors (K", +,.) est un K-espace vectoriel.

REMARQUE. En particulier, pour n = 1, K est lui-méme un K-espace vectoriel. Il suffit de considérer la loi interne X du corps
K comme une loi externe ..

REMARQUE. C" est aussi un R-espace vectoriel.

Exemple 1.6

C est un R-espace vectoriel.
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2 Sous-espaces vectoriels

2.1 Définition et exemples

Définition 2.1 Sous-espace vectoriel

Soient (E, +, .) un K-espace vectoriel. On dit que F est un sous-espace vectoriel de E si

(i) F est un sous-groupe de (E, +);

(ii) F est stable par multiplication par un scalaire i.e. V(A,x) € K X F,A.x € F;

Proposition 2.1

Soit (E, +, .) un K-espace vectoriel et F un sous-espace vectoriel de E. Alors F est un K-espace vectoriel.

REMARQUE. Si F est un sous-espace vectoriel de E et G un sous-espace vectoriel de F, alors G est un sous-espace vectoriel
de E.
Si F et G sont deux sous-espaces vectoriels de E et F C G, alors F est un sous-espace vectoriel de G.

REMARQUE. {0g} et E sont des sous-espaces vectoriels de E.

La définition étant peu maniable en pratique, on utilise plutot le théoréme suivant.

Théoréme 2.1 Caractérisation des sous-espaces vectoriels

Soit E un K-espace vectoriel. Alors F est un sous-espace vectoriel de E si et seulement si
1. FCE;
2. OE S F,

3. F est stable par combinaison linéaire i.e. V(A, w) € K2,V¥(x,y) € F%,Ax + uy € F.

\Y(E1 05 Prouver qu’un ensemble est un espace vectoriel

Il est souvent plus facile de montrer qu’un ensemble muni de lois interne et externe est un espace vectoriel en montrant
qu’il est un sous-espace vectoriel d’un espace vectoriel connu plutdét qu’en démontrant directement que c’est un espace
vectoriel.

Exemple 2.1 Géométrie

Une droite vectorielle du plan vectoriel est un sous-espace vectoriel du plan vectoriel.
Une droite vectorielle ou un plan vectoriel de 1’espace vectoriel sont des sous-espaces vectoriels de 1’espace vectoriel.

Exemple 2.2 Fonctions

Soit I un intervalle de R.
Pour tout n € N, €"(I, K) est un sous-espace vectoriel de K. Pour tout (n, p) € N? tel que n < p, CP(I,K) est un

sous-espace vectoriel de €"(IL, K). D(I, K) (fonctions dérivables) est un sous-espace vectoriel de K!. B(I, K) (fonctions
bornées) est un sous-espace vectoriel de K.
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Exemple 2.3 Polynomes

Pour tout n € N, K,,[X] est un sous-espace vectoriel de K[X].

Exemple 2.4 Sous-espaces vectoriels de K"

Toute partie de K" définie par un systéme linéaire et homogeéne d’équations cartésiennes est un sous-espace vectoriel de
K",

Par exemple, {(X, y,z,t) € R* X+ y = z + t = 0} est un sous-espace vectoriel de R*.

On verra que la réciproque est vraie : tout sous-espace vectoriel de K" peut étre défini par un systéme d’équation carté-
siennes linéaire et homogene.

Exemple 2.5 Equations différentielles

L’ensemble des solutions sur un intervalle I a valeurs dans K d’une équation différentielle linéaire et homogene est un
sous-espace vectoriel de K.

Exemple 2.6 Récurrences linéaires

L’ensemble des suites a valeurs dans K vérifiant une relation de récurrence linéaire et homogene est un sous-espace
vectoriel de KV,

2.2 Intersection de sous-espaces vectoriels

Proposition 2.2 Intersection de sous-espaces vectoriels

Soient E un K-espace vectoriel et (E);c; une famille de sous-espaces vectoriels de E. Alors N;crE est un sous-espace
vectoriel de E.

AtTENTION! La réunion de deux espaces vectoriels n’est pas un sous-espace vectoriel en général.

Exemple 2.7

Dans I’espace, I’intersection de deux droites vectorielles est le sous-espace nul. L’intersection d’un plan vectoriel et d’une
droite vectorielle non incluse dans ce plan est le sous-espace nul. L’intersection de deux plans vectoriels distincts est une
droite vectorielle.

Exercice 2.1 %% Réunions de sev

Soit E un K-espace vectoriel.

1. Soient F, G deux sous-espaces vectoriels de E. Montrer que F U G est un sous-espace vectoriel de E si et seulement
siFCGouGCF.

2. Soit (X;,)30 une suite croissante ( pour la relation d’ordre d’inclusion ) de sous-espaces vectoriels de E. Montrer que

U =[x,

n=0

est un sous-espace vectoriel de E.
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2.3 Combinaisons linéaires

Définition 2.2 Combinaison linéaire d’une famille finie de vecteurs

Soient E un K-espace vectoriel et (i, Uy, ... , U,,) une famille de n vecteurs de E. On appelle combinaison linéaire de la
n

famille (uq, u,, ..., U,,) tout vecteur de la forme z Aix; avec (A, Ay, ..., A,) € K™
i=1

AtTENTION! Si un vecteur x est combinaison linéaire des u;, il n’y a pas forcément unicité des scalaires A;.

Exemple 2.8

Posons u; = (1,2, —3), uy = (1,2, 3) et u; = (—1, 2, 3). (4, uy, u) est une famille de vecteurs de R3. u = (0,4, 12) est
une combinaison linéaire de la famille (u;, u,, u3) car u = u; + 2u, + 3us.

Définition 2.3 Famille presque nulle de scalaires

Soit (A));er € K. On dit que la famille (1;);c; est presque nulle si {i € I, A; # 0} est fini.
L’ensemble des familles presque nulles de K! se note K®.

Définition 2.4 Combinaison linéaire d’une famille quelconque de vecteurs

Soient E un K-espace vectoriel et (;);c; € EL. On appelle combinaison linéaire de la famille (1;);c; tout vecteur de la
forme Z Aix; olt (A;);er est une famille presque nulle de K.
iel

REMARQUE. Une combinaison linéaire d’une famille éventuellement infinie de vecteurs est donc une combinaison linéaire

d’une sous-famille finie de vecteurs de cette famille.

Exemple 2.9

Pour q € C, notons u, la suite de terme général g". Alors (ug)gec est une famille de vecteurs de CN. La suite u de terme

n+3
1
général 1 + 2"+! — <—§> est une combinaison linéaire de la famille (uq)qec car u = u; + 2u, + S7UL.
3

Proposition 2.3 Stabilité par combinaison linéaire

Soient F un sous-espace vectoriel d’un [K-espace vectoriel E et (f;);c; € FL. Alors toute combinaison linéaire de (f});er
appartient a F.

2.4 Sous-espace vectoriel engendré par une partie

Définition 2.5 Sous-espace vectoriel engendré par une partie

Soit A une partie d’un K-espace vectoriel E. On appelle sous-espace vectoriel engendré par A I’intersection des sous-
espaces vectoriels contenant A. C’est le plus petit sous-espace vectoriel (pour I’inclusion) contenant A. On le note vect(A).

REMARQUE. En particulier, vect(@) = {0g}.
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Proposition 2.4

Soit A une partie non vide d’un [K-espace vectoriel E. vect(A) est I’ensemble des combinaisons linéaires de la famille
(@)gea-

Définition 2.6 Sous-espace vectoriel engendré par une famille

Soit (x;);er une famille de vecteurs d’un K-espace vectoriel E. On appelle sous-espace vectoriel engendré par la famille
(x1)ie1 le sous-espace vectoriel engendré par la partie {x;, i € I}. Dans ce cas, on note ce sous-espace vectoriel vect(X;);cr
plutét que vect({x;,i € I}).

Cet ensemble est alors ’ensemble des combinaisons linéaires de la famille (x;);cr.

ATTENTION! Une partie et une famille sont des objets de natures différentes.

Exemple 2.10

Onpose F ={(a — b,a + b, b), (a,b) € R2}. Alors

F ={a(1,1,0) + b(-1,1,1),(a, b) € R?} = vect((1,1,0),(-1,1,1))

ArTENTION ! Ne pas confondre un sous-espace vectoriel et la famille qui I’engendre. {x;};c1 et vect(x;);c1 sont des objets
de natures différentes.

En particulier, si I est fini (ce qui est souvent le cas), la famille (x;);c; comporte un nombre fini d’éléments. Par contre,
le sous-espace vectoriel vect(xi)iinl comporte généralement une infinité d’éléments : en effet, si K est infini, il existe
généralement une infinité de combinaisons linéaires d’un nombre méme fini de vecteurs.

REMARQUE. Il peut y avoir ambiguité sur le corps de base puisqu’un ensemble peut éventuellement tre muni d’une structure
d’espace vectoriel pour plusieurs corps de base.

Pour étre plus explicite, on peut noter vecty (A) le sous-K-espace vectoriel engendrée par une partie A. C’est I’ensemble des
combinaisons linéaires de la famille (a),cp & coefficients dans K.

De méme, on peut noter vecty (x;);cr le sous-IK-espace vectoriel engendré par une famille (x;);cr. Cest I’ensemble des com-
binaisons linéaires de la famille (x;);; & coefficients dans K.

Exemple 2.11

L’ensemble des solutions a valeurs complexes de 1’équation différentielle y' = y est vectc(x — e*) ou encore vecty(x +—
eX, x > ie¥).

Proposition 2.5

Soient A et B deux parties d’un K-espace vectoriel E. Si A C B, alors vect(A) C vect(B).

Exercice 2.2

Soit F une partie d’un K-espace vectoriel E.
Montrer que F est un sous-espace vectoriel de E si et seulement si vect(F) = F.
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\Y (510 Y Mettre sous forme d’un vect

Les parties de K" définies par un systéme d’équations linéaires peuvent étre mises sous forme d’un vect. C’est une maniére
efficace de montrer que ce sont des sous-espaces vectoriels.

Exemple 2.12
{(x,y,2) ER3 | x+y—z=0}={(x,y,x +y),(x,y) € R?}

= {x(1,0,1) + ¥(0,1,1),(x,y) € R?}
= vect((1,0,1),(0,1,1))

Exemple 2.13

X+y—-z=0 X=-352
Puisque Y = 2 )
xX—y+2z=0 _ 3
y= EZ

{(x,y,2) € R3 |x+y—z:x—y+22:0}:{(—%z,%z,z),ze IR}
13
= {z(—z,z,l),z (S R}
13
-eo((-431)

Exemple 2.14 Equations différentielles linéaires homogenes d’ordre 1

Soit (E) I’équation différentielle y' + ay = 0 ot a € C(I, K). On note 8 I’ensemble des solutions de (E) sur I & valeurs
dans K. Alors 8 = vect(e™) ol A est une primitive de a sur L.
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Exemple 2.15 Equations différentielles linéaires homogenes d’ordre 2 a coefficients constants

Soient (a, b) € K? et (E) I’équation différentielle y” + ay’ + by = 0. On note 8 I’ensemble des solutions de (E) sur R &
valeurs dans K.

* Si K = R et I’équation caractéristique possede deux racines réelles 1 et 1, alors

8 = vect(x > e"¥, x > e'2¥)

* Si K = R et I’équation caractéristique posseéde une unique racine réelle r, alors

8 = vect(x — e, x > xe™)

* Si K = R et I’équation caractéristique possede deux racines complexes conjuguées r + iw et r — iw, alors

8 = vect(x — cos(wx)e™, x — sin(wx)e’™)

Si K = C et I’équation caractéristique possede deux racines complexes 1 et 1, alors

8 = vect(x > e"*, x > e2%)

Si K = C et I’équation caractéristique posseéde une unique racine complexe r, alors

8 = vect(x — e, x > xe™)

REMARQUE. Dans les cas out K = R, les «vect» sont des ensembles de combinaisons linéaires a coefficients réels tandis que
dans les cas ou K = C, les «vect» sont des ensembles de combinaisons linéaires a coeflicients complexes.

Exemple 2.16 Récurrences linéaires homogenes

Soient (a,b) € K2 et 8§ ’ensemble des suites (uy),en 2 valeurs dans K telles que u,,4, + au,4; + bu,, = 0 pour tout
neN.

* Si K = R et I’équation caractéristique possede deux racines réelles 1, et r,, alors
8 = vect((H")nen, (5 nen)
* Si K = R et I’équation caractéristique possede une unique racine réelle r, alors
8§ = veet((r'")pens: (" )nen)
i

* Si K = R et I’équation caractéristique posséde deux racines complexes conjuguées re'® et re~®, alors

8 = vect((r" cos(n0)),.en, (" sin(nd)),.en)

Si K = C et I’équation caractéristique possede deux racines complexes 1 et 1, alors
8 = vect((H)nen> (B nen)

* Si K = C et I’équation caractéristique possede une unique racine complexe r, alors

8 = vect((r")pen, (Mr)pen)

REMARQUE. Dans les cas out K = R, les «vect» sont des ensembles de combinaisons linéaires a coefficients réels tandis que
dans les cas ou K = C, les «vect» sont des ensembles de combinaisons linéaires a coefficients complexes.
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Exercice 2.3

On se place dans le R-espace vectoriel R®. Montrer que

vect(x = cos(kx))gen = vect(x = cosk X)ien

3 Somme de deux sous-espaces vectoriels

Définition 3.1 Somme de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E. On appelle somme de F et G le sous-espace
vectoriel F+ G ={x+y|x € F,y € Gl

REMARQUE. OnaF + G = vect(F U G). F + G est donc le plus petit sous-espace vectoriel contenant F et G.

REMARQUE. La somme de sous-espaces vectoriels est commutative : si F et G sont deux sous-espaces vectoriels, F+G = G+F.

Exemple 3.1

Dans ’espace, la somme de deux droites vectorielles distinctes est un plan vectoriel. La somme d’un plan vectoriel et
d’une droite vectorielle non incluse dans ce plan est I’espace tout entier. La somme de deux plans vectoriels distincts est
I’espace tout entier.

ArTENTION ! Il ne faut pas confondre F+ G qui est un sous-espace vectoriel et FUG qui n’est pas un sous-espace vectoriel
en général. Prendre par exemple F et G deux droites vectorielles distinctes de 1’espace.

Proposition 3.1

Soient A, B deux parties d’un K-espace vectoriel E. Alors vect(A U B) = vect(A) + vect(B).

ArTENTION! Par contre, on n’a pas vect(A) N vect(B) = vect(A N B) en général. Prendre par exemple deux vecteurs
distincts et colinéaires @ et b. On pose A = {d}etB = {b}. On a vect(A) = vect(B) = vect(@) = vect(b) mais ANB = @
donc vect(A N B) = {0}.

REMARQUE. En particulier, si F = vect(f;, ..., f;,) et G = vect(gy, ... ,gp), alors F+ G = vect(fi, ... » frs 81» -+ ,gp).

REMARQUE. Soient F et G deux sous-espaces d’un K-espace vectoriel E. Alors F 4+ G est le plus petit sous-espce vectoriel
contenant F et G.

?2 ArTENTION! On n’a pas distributivité de N sur + : en général, F N (G + H) 2 (F N G) + (F n H). Prendre par exemple
trois droites vectorielles distinctes deux a deux mais coplanaires.
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Définition 3.2 Somme directe

On dit que deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont en somme directe si tout vecteur de F+ G
se décompose de maniere unique comme somme d’un vecteur de F et d’un vecteur de G i.e.

Vx€F+G, A(y,z2) EFXG, x=y+z

La somme de F et G est alors notée F @ G.

REMARQUE. C’est I'unicité qui importe puisqu’un vecteur de F + G se décompose toujours comme somme d’un vecteur de
F et d’un vecteur de G par définition de F + G.

Proposition 3.2

Deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont en somme directe si et seulement si F N G = {0g}.

\Y (1 LGN Prouver que deux sous-espaces vectoriels sont en somme directe

Pour prouver que deux sous-espaces vectoriels F et G sont en somme directe, on utilise généralement la premiere carac-
térisation : on se donne z € F N G et on montre que z = Og.

Ceci montre que F N G C {Og}. Il n’est pas nécessaire de montrer 1’inclusion réciproque car, F N G étant un sous-espace
vectoriel de E, il contient toujours O.

Exemple 3.2

Dans I’espace, deux droites vectorielles distinctes sont en somme directe. Un plan vectoriel et une droite vectorielle non
incluse dans ce plan sont en somme directe. Deux plans vectoriels ne sont jamais en somme directe.

Définition 3.3 Sous-espaces supplémentaires

On dit que deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont supplémentaires (dans E) si I’une des
propositions équivalentes suivantes est vérifiée

(i) F+G=EerFnG = {0g}
(ii) tout vecteur de E se décompose de maniere unique comme somme d’un vecteur de F et d’un vecteur de G i.e.

Vx €E, 3(y,z2) EFXG, x=y+z

Dans ce cas, on note F @ G = E. On dit aussi que F est un supplémentaire de G dans E et que G est un supplémentaire
de F dans E.
Avec les notations précédentes, on appelle y (resp. z) le projeté de x sur F (resp. G) parallelement a G (resp. F).

ATTENTION! Il n’y a pas unicité du supplémentaire.

Exemple 3.3

Soit P un plan vectoriel de 1’espace vectoriel E. Alors toute droite vectorielle D non incluse dans E est un supplémentaire
de P dans E. Il n’y a clairement pas unicité du supplémentaire.
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AtTENTION! Ne pas confondre supplémentaire et complémentaire. Le complémentaire d’un sous-espace vectoriel est
unique mais ce n’est jamais un sous-espace vectoriel (il ne contient pas le vecteur nul).

Exercice 3.1

Dans R3, on pose F = {(x,y,2z) € R3 | x + y + z = 0}, G = vect((1,1,1)) et H = vect((1,—1,1)). Montrer que G et H
sont deux supplémentaires de F dans R3.

\YE1 0 Y Prouver que deux sous-espaces vectoriels sont supplémentaires (premiere version)

Pour prouver que deux sous-espaces vectoriels F et G sont supplémentaires dans E, on procede treés souvent par ana-
lyse/synthese. On veut prouver que tout vecteur de E se décompose de maniere unique comme somme d’un vecteur de F
et d’un vecteur de G. On procede alors comme suit.

* On se donne donc un vecteur x de E : «Soit x € E».
* On suppose que x s’écrit sous la forme y + zavecy € Fetz € G.

* Analyse : On en déduit en raisonnant par condition nécessaire la forme de y et z en fonction de x. On trouve en
particulier que y et z sont déterminés de maniere unique.

* On vérifie que le y et le z trouvés conviennent.

\Y 1 LG Prouver que deux sous-espaces vectoriels sont supplémentaires (deuxiéme version)

Pour prouver que deux sous-espaces vectoriels F et G sont supplémentaires dans E, on peut également prouver séparément
que FNG ={0g}etque F+ G =E.

* On prouve d’abord que F N G = {0g}. C’est souvent trés simple.
* On montre par analyse/synthese que F + G = E.

On se donne donc un vecteur x de E : «Soit x € E».

On suppose que x s’écrit sous laforme y + zavecy € Fetz € G.

Analyse : On en déduit en raisonnant par condition nécessaire la forme de y et z en fonction de x.

Synthese : On vérifie que le y et le z trouvés conviennent.

Comme on a prouvé que F N G = {0g}, on n’a pas besoin de prouver ’unicité du couple (y, z). Autrement
dit, I’analyse sera faite au brouillon et ne figurera pas sur la copie. Evidemment, la syntheése doit figurer sur
la copie.

Exercice 3.2

Montrer que I’ensemble des fonctions paires de R dans R et I’ensemble des fonctions impaires de R dans R sont des
sous-espaces vectoriels supplémentaires de R®.

4 Espace vectoriel produit
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Théoréme 4.1 Espace vectoriel produit

n

Soient Eq, ..., E,, des [K-espaces vectoriels. On munit H E d’une loi interne + et d’une loi interne . en posant :
k=1

7 2
1) Y((x1, e 5 %), D15 e 5 Y0)) € (H Ek) s Oty e X))+ 15 s V) = (X1 + Y15 o5 X0 + V)5
k=1
n
(i) VA € K, V(xq,...,X,) € HEk, A(x1s e s X)) = (AXq, o s AXp).
k=1

n n
Alors (H Ey, +, ) estun K-espace vectoriel. H E s’appelle I’espace vectoriel produit des espaces vectoriels E, ..., E,.
k=1 k=1

Le vecteur nul de H Ei est (Og,, ..., Og,).
k=1

ArTENTION ! Dans la proposition précédente, + et . désignent suivant les situations les lois interne et externe des différents

n
E) oude H Ej.
k=1

REMARQUE. On peut remarquer que K" muni de la structure de K-espace vectoriel vue dans les exemples n’est autre que
I’espace vectoriel produit de n fois le méme K-espace vectoriel K.

5 Espace vectoriel d’applications

Théoreme 5.1 Espace vectoriel d’applications

Soit X un ensemble et F un K-espace vectoriel. On munit I’ensemble FX des applications de X dans F d’une loi interne
et d’une loi externe de la maniere suivante.

(i) Pour tout (f,g) € (FX)Z, on définit 1’application f + g par :
Vx € X,(f +8)(x) = f(x) + g(x)
(ii) Pour tout (A, f) € K x FX, on définit I’application A.f par :

Vx € X, (A.f)(x) = L.f(x)

— F
Alors (FX, +,.) est un K-espace vectoriel avec Opx 1’application nulle { 0w
— Ur

Exemple 5.1

On retrouve le fait que R! est un R-espace vectoriel puisque R est un R-espace vectoriel.
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