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Espaces vectoriels

1 Définition et exemples fondamentaux

1.1 Définition

Définition 1.1 Espace vectoriel

Soient 𝕂 un corps et E un ensemble muni d’une loi interne + et d’une loi externe . i.e. d’une application :

{ 𝕂 × E ⟶ E
(λ, 𝑥) ⟼ λ.𝑥

On dit que (E, +, .) est un 𝕂-espace vectoriel ou un espace vectoriel sur 𝕂 si :

(i) (E, +) est un groupe commutatif (dont l’élément neutre 0E ou 0 est appelé le vecteur nul) ;

(ii) Distributivité de . sur + à gauche : ∀(λ, μ) ∈ 𝕂2, ∀𝑥 ∈ E, (λ + μ).𝑥 = λ.𝑥 + μ.𝑥 ;

(iii) Distributivité de . sur + à droite : ∀λ ∈ 𝕂, ∀(𝑥, 𝑦) ∈ E2, λ.(𝑥 + 𝑦) = λ.𝑥 + λ.𝑦 ;

(iv) ∀𝑥 ∈ E, 1𝕂.𝑥 = 𝑥 ;

(v) ∀(λ, μ) ∈ 𝕂2, ∀𝑥 ∈ E, λ.(μ.𝑥) = (λμ).𝑥.

Les éléments de E sont appelés des vecteurs et les éléments de 𝕂 sont appelés des scalaires. Le corps 𝕂 est appelé le
corps de base de l’espace vectoriel E.

Remarque. Dans la distributivité de + sur ., il s’agit de la loi + du corps 𝕂. Dans la distributivité de . sur +, il s’agit de la loi
+ du groupe E.

Remarque. Le . de la loi externe est très souvent omis : si λ ∈ 𝕂 et 𝑥 ∈ E, on note souvent λ𝑥 au lieu de λ.𝑥.

Remarque. On ne met pas de flèches sur les vecteurs des espaces vectoriels à moins que l’on fasse de la géométrie dans le
plan ou dans l’espace.

Remarque. On parle souvent d’espace vectoriel sans préciser les lois + et .. On dit souvent «E est un 𝕂-espace vectoriel»
alors qu’en toute rigueur, on devrait dire «(E, +, .) est un 𝕂-espace vectoriel»».

Remarque. Si E est un𝕂-espace vectoriel et si 𝕃 est un sous-corps de𝕂, alors E est aussi un 𝕃-espace vectoriel en considérant
la restriction de la loi . à 𝕃 × E.

Proposition 1.1 Règles de calcul

Soit E un 𝕂-espace vectoriel.

1. ∀(λ, 𝑥) ∈ 𝕂 × E, λ.𝑥 = 0E ⟺ (λ = 0𝕂 ou 𝑥 = 0E).

2. ∀(λ, 𝑥) ∈ 𝕂 × E,−(λ.𝑥) = (−λ).𝑥 = λ.(−𝑥) ;

1.2 Exemples
Les espaces vectoriels sont partout.
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Exemple 1.1 Géométrie

Le plan vectoriel et l’espace vectoriel (ensemble des vecteurs du plan ou de l’espace) sont des ℝ-espaces vectoriels.

Remarque. Historiquement, le plan et l’espace ont été les prototypes d’espaces vectoriels. D’ailleurs, il nous sera très utile
en pratique de représenter les vecteurs d’espaces vectoriels abstraits comme des vecteurs du plan et de l’espace.

Exemple 1.2 Suites

Pour ((𝑢𝑛), (𝑣𝑛)) ∈ (𝕂ℕ)2, on pose (𝑢𝑛) + (𝑣𝑛) = (𝑢𝑛 + 𝑣𝑛).
Pour (λ, (𝑢𝑛)) ∈ 𝕂 × 𝕂ℕ, on pose λ.(𝑢𝑛) = (λ𝑢𝑛).
Alors (𝕂ℕ, +, .) est alors un 𝕂-espace vectoriel.

Remarque. ℂℕ est aussi un ℝ-espace vectoriel.

Exemple 1.3 Fonctions

Soit X un ensemble.
Pour (𝑓, 𝑔) ∈ (𝕂𝕏)2, on pose 𝑓 + 𝑔 ∶ 𝑥 ∈ X ↦ 𝑓(𝑥) + 𝑔(𝑥).
Pour (λ, 𝑓) ∈ 𝕂 × 𝕂𝕏, on pose λ.𝑓 ∶ 𝑥 ∈ X ↦ λ𝑓(𝑥).
Alors (𝕂𝕏, +, .) est un 𝕂-espace vectoriel.

Remarque. ℂ𝕏 est aussi un ℝ-espace vectoriel.

Exemple 1.4 Polynômes

Pour P = ∑
𝑛∈ℕ

𝑎𝑛X𝑛 ∈ 𝕂[X] et Q = ∑
𝑛∈ℕ

𝑏𝑛X𝑛 ∈ 𝕂[X], on pose P + Q = ∑
𝑛∈ℕ

(𝑎𝑛 + 𝑏𝑛)X𝑛.

Pour λ ∈ 𝕂 et P = ∑
𝑛∈ℕ

𝑎𝑛X𝑛 ∈ 𝕂[X], on pose λ.P = ∑
𝑛∈ℕ

λ𝑎𝑛X𝑛.

Alors (𝕂[X], +, .) est un 𝕂-espace vectoriel.

Remarque. ℂ[X] est aussi un ℝ-espace vectoriel.

Exemple 1.5

Pour ((𝑥1,… , 𝑥𝑛), (𝑦1,… , 𝑦𝑛)) ∈ (𝕂𝑛)2, on pose (𝑥1,… , 𝑥𝑛) + (𝑦1,… , 𝑦𝑛) = (𝑥1 + 𝑦1,… , 𝑥𝑛 + 𝑦𝑛).
Pour λ ∈ 𝕂 et (𝑥1,… , 𝑥𝑛) ∈ 𝕂𝑛, on pose λ.(𝑥1,… , 𝑥𝑛) = (λ𝑥1,… , λ𝑥𝑛).
Alors (𝕂𝑛, +, .) est un 𝕂-espace vectoriel.

Remarque. En particulier, pour 𝑛 = 1, 𝕂 est lui-même un 𝕂-espace vectoriel. Il suffit de considérer la loi interne × du corps
𝕂 comme une loi externe ..

Remarque. ℂ𝑛 est aussi un ℝ-espace vectoriel.

Exemple 1.6

ℂ est un ℝ-espace vectoriel.
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2 Sous-espaces vectoriels

2.1 Définition et exemples

Définition 2.1 Sous-espace vectoriel

Soient (E, +, .) un 𝕂-espace vectoriel. On dit que F est un sous-espace vectoriel de E si

(i) F est un sous-groupe de (E, +) ;

(ii) F est stable par multiplication par un scalaire i.e. ∀(λ, 𝑥) ∈ 𝕂 × F, λ.𝑥 ∈ F ;

Proposition 2.1

Soit (E, +, .) un 𝕂-espace vectoriel et F un sous-espace vectoriel de E. Alors F est un 𝕂-espace vectoriel.

Remarque. Si F est un sous-espace vectoriel de E et G un sous-espace vectoriel de F, alors G est un sous-espace vectoriel
de E.
Si F et G sont deux sous-espaces vectoriels de E et F ⊂ G, alors F est un sous-espace vectoriel de G.

Remarque. {0E} et E sont des sous-espaces vectoriels de E.

La définition étant peu maniable en pratique, on utilise plutôt le théorème suivant.

Théorème 2.1 Caractérisation des sous-espaces vectoriels

Soit E un 𝕂-espace vectoriel. Alors F est un sous-espace vectoriel de E si et seulement si

1. F ⊂ E ;

2. 0E ∈ F ;

3. F est stable par combinaison linéaire i.e. ∀(λ, μ) ∈ 𝕂2, ∀(𝑥, 𝑦) ∈ F2, λ𝑥 + μ𝑦 ∈ F.

Méthode Prouver qu’un ensemble est un espace vectoriel

Il est souvent plus facile de montrer qu’un ensemble muni de lois interne et externe est un espace vectoriel en montrant
qu’il est un sous-espace vectoriel d’un espace vectoriel connu plutôt qu’en démontrant directement que c’est un espace
vectoriel.

Exemple 2.1 Géométrie

Une droite vectorielle du plan vectoriel est un sous-espace vectoriel du plan vectoriel.
Une droite vectorielle ou un plan vectoriel de l’espace vectoriel sont des sous-espaces vectoriels de l’espace vectoriel.

Exemple 2.2 Fonctions

Soit I un intervalle de ℝ.
Pour tout 𝑛 ∈ ℕ, 𝒞𝑛(I, 𝕂) est un sous-espace vectoriel de 𝕂I. Pour tout (𝑛, 𝑝) ∈ ℕ2 tel que 𝑛 ≤ 𝑝, 𝒞𝑝(I, 𝕂) est un
sous-espace vectoriel de 𝒞𝑛(I, 𝕂). 𝒟(I, 𝕂) (fonctions dérivables) est un sous-espace vectoriel de 𝕂I. ℬ(I, 𝕂) (fonctions
bornées) est un sous-espace vectoriel de 𝕂I.
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Exemple 2.3 Polynômes

Pour tout 𝑛 ∈ ℕ, 𝕂𝑛[X] est un sous-espace vectoriel de 𝕂[X].

Exemple 2.4 Sous-espaces vectoriels de 𝕂𝑛

Toute partie de 𝕂𝑛 définie par un système linéaire et homogène d’équations cartésiennes est un sous-espace vectoriel de
𝕂𝑛.
Par exemple, {(𝑥, 𝑦, 𝑧, 𝑡) ∈ ℝ4, 𝑥 + 𝑦 = 𝑧 + 𝑡 = 0} est un sous-espace vectoriel de ℝ4.
On verra que la réciproque est vraie : tout sous-espace vectoriel de 𝕂𝑛 peut être défini par un système d’équation carté-
siennes linéaire et homogène.

Exemple 2.5 Équations différentielles

L’ensemble des solutions sur un intervalle I à valeurs dans 𝕂 d’une équation différentielle linéaire et homogène est un
sous-espace vectoriel de 𝕂I.

Exemple 2.6 Récurrences linéaires

L’ensemble des suites à valeurs dans 𝕂 vérifiant une relation de récurrence linéaire et homogène est un sous-espace
vectoriel de 𝕂ℕ.

2.2 Intersection de sous-espaces vectoriels

Proposition 2.2 Intersection de sous-espaces vectoriels

Soient E un 𝕂-espace vectoriel et (F𝑖)𝑖∈I une famille de sous-espaces vectoriels de E. Alors ∩𝑖∈IF𝑖 est un sous-espace
vectoriel de E.

Attention!� La réunion de deux espaces vectoriels n’est pas un sous-espace vectoriel en général.

Exemple 2.7

Dans l’espace, l’intersection de deux droites vectorielles est le sous-espace nul. L’intersection d’un plan vectoriel et d’une
droite vectorielle non incluse dans ce plan est le sous-espace nul. L’intersection de deux plans vectoriels distincts est une
droite vectorielle.

Exercice 2.1 ★★ Réunions de sev

Soit E un 𝕂-espace vectoriel.

1. Soient F,G deux sous-espaces vectoriels de E. Montrer que F ∪ G est un sous-espace vectoriel de E si et seulement
si F ⊂ G ou G ⊂ F.

2. Soit (X𝑛)𝑛⩾0 une suite croissante ( pour la relation d’ordre d’inclusion ) de sous-espaces vectoriels de E. Montrer que

U = ⋃
𝑛⩾0

X𝑛

est un sous-espace vectoriel de E.
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2.3 Combinaisons linéaires

Définition 2.2 Combinaison linéaire d’une famille finie de vecteurs

Soient E un 𝕂-espace vectoriel et (𝑢1, 𝑢2,… , 𝑢𝑛) une famille de 𝑛 vecteurs de E. On appelle combinaison linéaire de la

famille (𝑢1, 𝑢2,… , 𝑢𝑛) tout vecteur de la forme
𝑛
∑
𝑖=1

λ𝑖𝑥𝑖 avec (λ1, λ2,… , λ𝑛) ∈ 𝕂𝑛.

Attention!� Si un vecteur 𝑥 est combinaison linéaire des 𝑢𝑖, il n’y a pas forcément unicité des scalaires λ𝑖.

Exemple 2.8

Posons 𝑢1 = (1, 2, −3), 𝑢2 = (1, −2, 3) et 𝑢3 = (−1, 2, 3). (𝑢1, 𝑢2, 𝑢3) est une famille de vecteurs de ℝ3. 𝑢 = (0, 4, 12) est
une combinaison linéaire de la famille (𝑢1, 𝑢2, 𝑢3) car 𝑢 = 𝑢1 + 2𝑢2 + 3𝑢3.

Définition 2.3 Famille presque nulle de scalaires

Soit (λ𝑖)𝑖∈I ∈ 𝕂I. On dit que la famille (λ𝑖)𝑖∈I est presque nulle si {𝑖 ∈ I, λ𝑖 ≠ 0} est fini.
L’ensemble des familles presque nulles de 𝕂I se note 𝕂(𝕀).

Définition 2.4 Combinaison linéaire d’une famille quelconque de vecteurs

Soient E un 𝕂-espace vectoriel et (𝑢𝑖)𝑖∈I ∈ EI. On appelle combinaison linéaire de la famille (𝑢𝑖)𝑖∈I tout vecteur de la
forme ∑

𝑖∈I
λ𝑖𝑥𝑖 où (λ𝑖)𝑖∈I est une famille presque nulle de 𝕂I.

Remarque. Une combinaison linéaire d’une famille éventuellement infinie de vecteurs est donc une combinaison linéaire
d’une sous-famille finie de vecteurs de cette famille.

Exemple 2.9

Pour 𝑞 ∈ ℂ, notons 𝑢𝑞 la suite de terme général 𝑞𝑛. Alors (𝑢𝑞)𝑞∈ℂ est une famille de vecteurs de ℂℕ. La suite 𝑢 de terme

général 1 + 2𝑛+1 − (−13)
𝑛+3

est une combinaison linéaire de la famille (𝑢𝑞)𝑞∈ℂ car 𝑢 = 𝑢1 + 2𝑢2 +
1
27𝑢 1

3
.

Proposition 2.3 Stabilité par combinaison linéaire

Soient F un sous-espace vectoriel d’un 𝕂-espace vectoriel E et (𝑓𝑖)𝑖∈I ∈ FI. Alors toute combinaison linéaire de (𝑓𝑖)𝑖∈I
appartient à F.

2.4 Sous-espace vectoriel engendré par une partie

Définition 2.5 Sous-espace vectoriel engendré par une partie

Soit A une partie d’un 𝕂-espace vectoriel E. On appelle sous-espace vectoriel engendré par A l’intersection des sous-
espaces vectoriels contenantA. C’est le plus petit sous-espace vectoriel (pour l’inclusion) contenantA. On le note vect(A).

Remarque. En particulier, vect(∅) = {0E}.
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Proposition 2.4

Soit A une partie non vide d’un 𝕂-espace vectoriel E. vect(A) est l’ensemble des combinaisons linéaires de la famille
(𝑎)𝑎∈A.

Définition 2.6 Sous-espace vectoriel engendré par une famille

Soit (𝑥𝑖)𝑖∈I une famille de vecteurs d’un 𝕂-espace vectoriel E. On appelle sous-espace vectoriel engendré par la famille
(𝑥𝑖)𝑖∈I le sous-espace vectoriel engendré par la partie {𝑥𝑖, 𝑖 ∈ I}. Dans ce cas, on note ce sous-espace vectoriel vect(𝑥𝑖)𝑖∈I
plutôt que vect({𝑥𝑖, 𝑖 ∈ I}).
Cet ensemble est alors l’ensemble des combinaisons linéaires de la famille (𝑥𝑖)𝑖∈I.

Attention!� Une partie et une famille sont des objets de natures différentes.

Exemple 2.10

On pose F = {(𝑎 − 𝑏, 𝑎 + 𝑏, 𝑏), (𝑎, 𝑏) ∈ ℝ2}. Alors

F = {𝑎(1, 1, 0) + 𝑏(−1, 1, 1), (𝑎, 𝑏) ∈ ℝ2} = vect((1, 1, 0), (−1, 1, 1))

Attention!� Ne pas confondre un sous-espace vectoriel et la famille qui l’engendre. {𝑥𝑖}𝑖∈I et vect(𝑥𝑖)𝑖∈I sont des objets
de natures différentes.
En particulier, si I est fini (ce qui est souvent le cas), la famille (𝑥𝑖)𝑖∈I comporte un nombre fini d’éléments. Par contre,
le sous-espace vectoriel vect(𝑥𝑖)𝑖𝑖𝑛I comporte généralement une infinité d’éléments : en effet, si 𝕂 est infini, il existe
généralement une infinité de combinaisons linéaires d’un nombre même fini de vecteurs.

Remarque. Il peut y avoir ambiguïté sur le corps de base puisqu’un ensemble peut éventuellement être muni d’une structure
d’espace vectoriel pour plusieurs corps de base.
Pour être plus explicite, on peut noter vect𝕂(A) le sous-𝕂-espace vectoriel engendrée par une partie A. C’est l’ensemble des
combinaisons linéaires de la famille (𝑎)𝑎∈A à coefficients dans 𝕂.
De même, on peut noter vect𝕂(𝑥𝑖)𝑖∈I le sous-𝕂-espace vectoriel engendré par une famille (𝑥𝑖)𝑖∈I. C’est l’ensemble des com-
binaisons linéaires de la famille (𝑥𝑖)𝑖∈I à coefficients dans 𝕂.

Exemple 2.11

L’ensemble des solutions à valeurs complexes de l’équation différentielle 𝑦′ = 𝑦 est vectℂ(𝑥 ↦ 𝑒𝑥) ou encore vectℝ(𝑥 ↦
𝑒𝑥, 𝑥 ↦ 𝑖𝑒𝑥).

Proposition 2.5

Soient A et B deux parties d’un 𝕂-espace vectoriel E. Si A ⊂ B, alors vect(A) ⊂ vect(B).

Exercice 2.2

Soit F une partie d’un 𝕂-espace vectoriel E.
Montrer que F est un sous-espace vectoriel de E si et seulement si vect(F) = F.
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Méthode Mettre sous forme d’un vect

Les parties de𝕂𝑛 définies par un système d’équations linéaires peuvent être mises sous forme d’un vect. C’est une manière
efficace de montrer que ce sont des sous-espaces vectoriels.

Exemple 2.12

{(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥 + 𝑦 − 𝑧 = 0} = {(𝑥, 𝑦, 𝑥 + 𝑦), (𝑥, 𝑦) ∈ ℝ2}
= {𝑥(1, 0, 1) + 𝑦(0, 1, 1), (𝑥, 𝑦) ∈ ℝ2}
= vect((1, 0, 1), (0, 1, 1))

Exemple 2.13

Puisque {
𝑥 + 𝑦 − 𝑧 = 0
𝑥 − 𝑦 + 2𝑧 = 0

⟺
⎧
⎨
⎩

𝑥 = −12𝑧

𝑦 = 3
2𝑧

,

{(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥 + 𝑦 − 𝑧 = 𝑥 − 𝑦 + 2𝑧 = 0} = {(−12𝑧,
3
2𝑧, 𝑧) , 𝑧 ∈ ℝ}

= {𝑧 (−12 ,
3
2 , 1) , 𝑧 ∈ ℝ}

= vect ((−12 ,
3
2 , 1))

Exemple 2.14 Équations différentielles linéaires homogènes d’ordre 1

Soit (E) l’équation différentielle 𝑦′ + 𝑎𝑦 = 0 où 𝑎 ∈ 𝒞(I, 𝕂). On note 𝒮 l’ensemble des solutions de (E) sur I à valeurs
dans 𝕂. Alors 𝒮 = vect(𝑒−A) où A est une primitive de 𝑎 sur I.
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Exemple 2.15 Équations différentielles linéaires homogènes d’ordre 2 à coefficients constants

Soient (𝑎, 𝑏) ∈ 𝕂2 et (E) l’équation différentielle 𝑦″ + 𝑎𝑦′ + 𝑏𝑦 = 0. On note 𝒮 l’ensemble des solutions de (E) sur ℝ à
valeurs dans 𝕂.

• Si 𝕂 = ℝ et l’équation caractéristique possède deux racines réelles 𝑟1 et 𝑟2, alors

𝒮 = vect(𝑥 ↦ 𝑒𝑟1𝑥, 𝑥 ↦ 𝑒𝑟2𝑥)

• Si 𝕂 = ℝ et l’équation caractéristique possède une unique racine réelle 𝑟, alors

𝒮 = vect(𝑥 ↦ 𝑒𝑟𝑥, 𝑥 ↦ 𝑥𝑒𝑟𝑥)

• Si 𝕂 = ℝ et l’équation caractéristique possède deux racines complexes conjuguées 𝑟 + 𝑖ω et 𝑟 − 𝑖ω, alors

𝒮 = vect(𝑥 ↦ cos(ω𝑥)𝑒𝑟𝑥, 𝑥 ↦ sin(ω𝑥)𝑒𝑟𝑥)

• Si 𝕂 = ℂ et l’équation caractéristique possède deux racines complexes 𝑟1 et 𝑟2, alors

𝒮 = vect(𝑥 ↦ 𝑒𝑟1𝑥, 𝑥 ↦ 𝑒𝑟2𝑥)

• Si 𝕂 = ℂ et l’équation caractéristique possède une unique racine complexe 𝑟, alors

𝒮 = vect(𝑥 ↦ 𝑒𝑟𝑥, 𝑥 ↦ 𝑥𝑒𝑟𝑥)

Remarque. Dans les cas où 𝕂 = ℝ, les «vect» sont des ensembles de combinaisons linéaires à coefficients réels tandis que
dans les cas où 𝕂 = ℂ, les «vect» sont des ensembles de combinaisons linéaires à coefficients complexes.

Exemple 2.16 Récurrences linéaires homogènes

Soient (𝑎, 𝑏) ∈ 𝕂2 et 𝒮 l’ensemble des suites (𝑢𝑛)𝑛∈ℕ à valeurs dans 𝕂 telles que 𝑢𝑛+2 + 𝑎𝑢𝑛+1 + 𝑏𝑢𝑛 = 0 pour tout
𝑛 ∈ ℕ.

• Si 𝕂 = ℝ et l’équation caractéristique possède deux racines réelles 𝑟1 et 𝑟2, alors

𝒮 = vect((𝑟𝑛1 )𝑛∈ℕ, (𝑟𝑛2 )𝑛∈ℕ)

• Si 𝕂 = ℝ et l’équation caractéristique possède une unique racine réelle 𝑟, alors

𝒮 = vect((𝑟𝑛)𝑛∈ℕ, (𝑛𝑟𝑛)𝑛∈ℕ)

• Si 𝕂 = ℝ et l’équation caractéristique possède deux racines complexes conjuguées 𝑟𝑒𝑖θ et 𝑟𝑒−𝑖θ, alors

𝒮 = vect((𝑟𝑛 cos(𝑛θ))𝑛∈ℕ, (𝑟𝑛 sin(𝑛θ))𝑛∈ℕ)

• Si 𝕂 = ℂ et l’équation caractéristique possède deux racines complexes 𝑟1 et 𝑟2, alors

𝒮 = vect((𝑟𝑛1 )𝑛∈ℕ, (𝑟𝑛2 )𝑛∈ℕ)

• Si 𝕂 = ℂ et l’équation caractéristique possède une unique racine complexe 𝑟, alors

𝒮 = vect((𝑟𝑛)𝑛∈ℕ, (𝑛𝑟𝑛)𝑛∈ℕ)

Remarque. Dans les cas où 𝕂 = ℝ, les «vect» sont des ensembles de combinaisons linéaires à coefficients réels tandis que
dans les cas où 𝕂 = ℂ, les «vect» sont des ensembles de combinaisons linéaires à coefficients complexes.

http://lgarcin.github.io 8

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Exercice 2.3

On se place dans le ℝ-espace vectoriel ℝℝ. Montrer que

vect(𝑥 ↦ cos(𝑘𝑥))𝑘∈ℕ = vect(𝑥 ↦ cos𝑘 𝑥)𝑘∈ℕ

3 Somme de deux sous-espaces vectoriels

Définition 3.1 Somme de deux sous-espaces vectoriels

Soient F et G deux sous-espaces vectoriels d’un 𝕂-espace vectoriel E. On appelle somme de F et G le sous-espace
vectoriel F + G = {𝑥 + 𝑦 | 𝑥 ∈ F, 𝑦 ∈ G}.

Remarque. On a F + G = vect(F ∪ G). F + G est donc le plus petit sous-espace vectoriel contenant F et G.

Remarque. La somme de sous-espaces vectoriels est commutative : si F etG sont deux sous-espaces vectoriels, F+G = G+F.

Exemple 3.1

Dans l’espace, la somme de deux droites vectorielles distinctes est un plan vectoriel. La somme d’un plan vectoriel et
d’une droite vectorielle non incluse dans ce plan est l’espace tout entier. La somme de deux plans vectoriels distincts est
l’espace tout entier.

Attention!� Il ne faut pas confondre F+G qui est un sous-espace vectoriel et F∪G qui n’est pas un sous-espace vectoriel
en général. Prendre par exemple F et G deux droites vectorielles distinctes de l’espace.

Proposition 3.1

Soient A, B deux parties d’un 𝕂-espace vectoriel E. Alors vect(A ∪ B) = vect(A) + vect(B).

Attention!� Par contre, on n’a pas vect(A) ∩ vect(B) = vect(A ∩ B) en général. Prendre par exemple deux vecteurs
distincts et colinéaires ⃗𝑎 et ⃗𝑏. On pose A = { ⃗𝑎} et B = { ⃗𝑏}. On a vect(A) = vect(B) = vect( ⃗𝑎) = vect( ⃗𝑏) mais A∩B = ∅
donc vect(A ∩ B) = {0⃗}.

Remarque. En particulier, si F = vect(𝑓1,… , 𝑓𝑛) et G = vect(𝑔1,… , 𝑔𝑝), alors F + G = vect(𝑓1,… , 𝑓𝑛, 𝑔1,… , 𝑔𝑝).

Remarque. Soient F et G deux sous-espaces d’un 𝕂-espace vectoriel E. Alors F + G est le plus petit sous-espce vectoriel
contenant F et G.

Attention!� On n’a pas distributivité de ∩ sur + : en général, F ∩ (G + H) ⊋ (F ∩ G) + (F ∩ H). Prendre par exemple
trois droites vectorielles distinctes deux à deux mais coplanaires.

http://lgarcin.github.io 9

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Définition 3.2 Somme directe

On dit que deux sous-espaces vectoriels F et G d’un 𝕂-espace vectoriel E sont en somme directe si tout vecteur de F+G
se décompose de manière unique comme somme d’un vecteur de F et d’un vecteur de G i.e.

∀𝑥 ∈ F + G, ∃!(𝑦, 𝑧) ∈ F × G, 𝑥 = 𝑦 + 𝑧

La somme de F et G est alors notée F ⊕ G.

Remarque. C’est l’unicité qui importe puisqu’un vecteur de F + G se décompose toujours comme somme d’un vecteur de
F et d’un vecteur de G par définition de F + G.

Proposition 3.2

Deux sous-espaces vectoriels F et G d’un 𝕂-espace vectoriel E sont en somme directe si et seulement si F ∩ G = {0E}.

Méthode Prouver que deux sous-espaces vectoriels sont en somme directe

Pour prouver que deux sous-espaces vectoriels F et G sont en somme directe, on utilise généralement la première carac-
térisation : on se donne 𝑧 ∈ F ∩ G et on montre que 𝑧 = 0E.
Ceci montre que F ∩ G ⊂ {0E}. Il n’est pas nécessaire de montrer l’inclusion réciproque car, F ∩ G étant un sous-espace
vectoriel de E, il contient toujours 0E.

Exemple 3.2

Dans l’espace, deux droites vectorielles distinctes sont en somme directe. Un plan vectoriel et une droite vectorielle non
incluse dans ce plan sont en somme directe. Deux plans vectoriels ne sont jamais en somme directe.

Définition 3.3 Sous-espaces supplémentaires

On dit que deux sous-espaces vectoriels F et G d’un 𝕂-espace vectoriel E sont supplémentaires (dans E) si l’une des
propositions équivalentes suivantes est vérifiée

(i) F + G = E et F ∩ G = {0E}

(ii) tout vecteur de E se décompose de manière unique comme somme d’un vecteur de F et d’un vecteur de G i.e.

∀𝑥 ∈ E, ∃!(𝑦, 𝑧) ∈ F × G, 𝑥 = 𝑦 + 𝑧

Dans ce cas, on note F ⊕ G = E. On dit aussi que F est un supplémentaire de G dans E et que G est un supplémentaire
de F dans E.
Avec les notations précédentes, on appelle 𝑦 (resp. 𝑧) le projeté de 𝑥 sur F (resp. G) parallèlement à G (resp. F).

Attention!� Il n’y a pas unicité du supplémentaire.

Exemple 3.3

Soit P⃗ un plan vectoriel de l’espace vectoriel E⃗. Alors toute droite vectorielle D⃗ non incluse dans E⃗ est un supplémentaire
de P⃗ dans E⃗. Il n’y a clairement pas unicité du supplémentaire.

http://lgarcin.github.io 10

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Attention!� Ne pas confondre supplémentaire et complémentaire. Le complémentaire d’un sous-espace vectoriel est
unique mais ce n’est jamais un sous-espace vectoriel (il ne contient pas le vecteur nul).

Exercice 3.1

Dans ℝ3, on pose F = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑥 + 𝑦 + 𝑧 = 0}, G = vect((1, 1, 1)) et H = vect((1, −1, 1)). Montrer que G et H
sont deux supplémentaires de F dans ℝ3.

Méthode Prouver que deux sous-espaces vectoriels sont supplémentaires (première version)

Pour prouver que deux sous-espaces vectoriels F et G sont supplémentaires dans E, on procède très souvent par ana-
lyse/synthèse. On veut prouver que tout vecteur de E se décompose de manière unique comme somme d’un vecteur de F
et d’un vecteur de G. On procède alors comme suit.

• On se donne donc un vecteur 𝑥 de E : «Soit 𝑥 ∈ E».

• On suppose que 𝑥 s’écrit sous la forme 𝑦 + 𝑧 avec 𝑦 ∈ F et 𝑧 ∈ G.

• Analyse : On en déduit en raisonnant par condition nécessaire la forme de 𝑦 et 𝑧 en fonction de 𝑥. On trouve en
particulier que 𝑦 et 𝑧 sont déterminés de manière unique.

• On vérifie que le 𝑦 et le 𝑧 trouvés conviennent.

Méthode Prouver que deux sous-espaces vectoriels sont supplémentaires (deuxième version)

Pour prouver que deux sous-espaces vectoriels F etG sont supplémentaires dans E, on peut également prouver séparément
que F ∩ G = {0E} et que F + G = E.

• On prouve d’abord que F ∩ G = {0E}. C’est souvent très simple.

• On montre par analyse/synthèse que F + G = E.

– On se donne donc un vecteur 𝑥 de E : «Soit 𝑥 ∈ E».
– On suppose que 𝑥 s’écrit sous la forme 𝑦 + 𝑧 avec 𝑦 ∈ F et 𝑧 ∈ G.
– Analyse : On en déduit en raisonnant par condition nécessaire la forme de 𝑦 et 𝑧 en fonction de 𝑥.
– Synthèse : On vérifie que le 𝑦 et le 𝑧 trouvés conviennent.
– Comme on a prouvé que F ∩ G = {0E}, on n’a pas besoin de prouver l’unicité du couple (𝑦, 𝑧). Autrement

dit, l’analyse sera faite au brouillon et ne figurera pas sur la copie. Evidemment, la synthèse doit figurer sur
la copie.

Exercice 3.2

Montrer que l’ensemble des fonctions paires de ℝ dans ℝ et l’ensemble des fonctions impaires de ℝ dans ℝ sont des
sous-espaces vectoriels supplémentaires de ℝℝ.

4 Espace vectoriel produit
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Théorème 4.1 Espace vectoriel produit

Soient E1,… , E𝑛 des 𝕂-espaces vectoriels. On munit
𝑛
∏
𝑘=1

E𝑘 d’une loi interne + et d’une loi interne . en posant :

(i) ∀ ((𝑥1,… , 𝑥𝑛), (𝑦1,… , 𝑦𝑛)) ∈ (
𝑛
∏
𝑘=1

E𝑘)
2

, (𝑥1,… , 𝑥𝑛) + (𝑦1,… , 𝑦𝑛) = (𝑥1 + 𝑦1,… , 𝑥𝑛 + 𝑦𝑛) ;

(ii) ∀λ ∈ 𝕂, ∀(𝑥1,… , 𝑥𝑛) ∈
𝑛
∏
𝑘=1

E𝑘, λ.(𝑥1,… , 𝑥𝑛)) = (λ.𝑥1,… , λ.𝑥𝑛).

Alors (
𝑛
∏
𝑘=1

E𝑘, +, .) est un𝕂-espace vectoriel.
𝑛
∏
𝑘=1

E𝑘 s’appelle l’espace vectoriel produit des espaces vectorielsE1,… , E𝑛.

Le vecteur nul de
𝑛
∏
𝑘=1

E𝑘 est (0E1,… , 0E𝑛).

Attention!� Dans la proposition précédente,+ et . désignent suivant les situations les lois interne et externe des différents

E𝑘 ou de
𝑛
∏
𝑘=1

E𝑘.

Remarque. On peut remarquer que 𝕂𝑛 muni de la structure de 𝕂-espace vectoriel vue dans les exemples n’est autre que
l’espace vectoriel produit de 𝑛 fois le même 𝕂-espace vectoriel 𝕂.

5 Espace vectoriel d’applications

Théorème 5.1 Espace vectoriel d’applications

Soit X un ensemble et F un 𝕂-espace vectoriel. On munit l’ensemble FX des applications de X dans F d’une loi interne
et d’une loi externe de la manière suivante.

(i) Pour tout (𝑓, 𝑔) ∈ (FX)2, on définit l’application 𝑓 + 𝑔 par :

∀𝑥 ∈ X, (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)

(ii) Pour tout (λ, 𝑓) ∈ 𝕂 × FX, on définit l’application λ.𝑓 par :

∀𝑥 ∈ X, (λ.𝑓)(𝑥) = λ.𝑓(𝑥)

Alors (FX, +, .) est un 𝕂-espace vectoriel avec 0FX l’application nulle { X ⟶ F
𝑥 ⟼ 0F

.

Exemple 5.1

On retrouve le fait que ℝI est un ℝ-espace vectoriel puisque ℝ est un ℝ-espace vectoriel.
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