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FAMILLES SOMMABLES

K désigne le corps R ou C.

1 Familles de réels positifs

Définition 1.1 Somme d’une famille de réels positifs

Soit (w)je; € (IRJr)J une famille de réels positifs. Notons #(J) I’ensemble des parties finies de J. On pose

Z U = sup{z u, K e ?f(J)} € [0, +0]

jel jeK

REMARQUE. Dans le cas ot I = N, la somme de la suite positive (u,),en €st tout simplement la somme de la série
+o00

z uy,. Si la série diverge, Z U, = +oo.

neN n=0

Proposition 1.1 Invariance de la somme par permutation

Soient (j)jey € (R,)’ une famille de réels positifs et ¢ une permutation de J. Alors

Z Up(j) = Z Y;

Jjel jel

Définition 1.2 Famille sommable de réels positifs

Soit ()je; € (IRJr)J une famille de réels positifs. On dit que (1;);ey est sommable si Z U < +oo.
jel

REMARQUE. Soient (a;)je; et (by)jey deux familles de réels tels que 0 < a; < bj pour tout j € J. Si (b;);c; est sommable,
alors (a;);ey €galement.

Exemple 1.1

Soit ¢ € [0,1[. La famille (q'"')neZ est sommable. En effet, si J est une partie finie de Z, il existe N € N tel que
J C [-N,N]. Alors

N _ N
LS g =1+2g2" L <14 24 _1%4

nel n=—N l—q 1-q 1-¢q
1
La somme de la famille (q'”')neZ est T t Z puisque
N
1
lim ghl = 214
N-+oo S 1—¢q
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1
La famille <_q> n’est pas sommable. En effet, posons Jyy = [[1, N]]2 pour tout N € N*. Alors
(PN

(P’Q)EJN

puisque la série harmonique diverge vers +oo.

Proposition 1.2 Opérations
Somme Soient (1));ey et (v))jey des familles de réels positifs. Alors Z U+ = Z u; + Z Uj.
jel jel jel

Multiplication par un réel positif Soient (1;);c; une famille de réels positifs et A un réel positif. Alors 2 Ay = A 2 u;.
Jel Jel

REMARQUE. On utilise les conventions de calcul suivantes dans [0, +o0] :
* (+00) + (+00) = +00;
e pour A > 0,A X (+00) = +00;

* 0 X (400).

Proposition 1.3 Sommation par paquets

Soit J = |_| Jiet (W))jes € (R,)” une famille de réels positifs. Alors
iel

2=

iel jel; jeI

REMARQUE. L'égalité est encore valable lorsque I’un des membres vaut +oo.

Exemple 1.3

+o00 +00

1 2
On souhaite calculer nzz:l Gni1e en admettant que §(2) = 2 3= %
En utilisant la partition N* = {2k, k e N*} U {2k + 1, k € N},
+o00 +o00 +o00 +o00
1 1 1 1 1
= =25+ g =1+ ), s
=) n2 = 4k2 = 2k+1)2 4 = (2k +1)?

On en déduit que

te 1 3 2
kg) 2k+12 1@ =3
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Pour montrer qu'une famille de réels positifs (;);c; est sommable, on peut employer le théoréme de sommation par

paquets ou le théoréme de Fubini positif pour montrer que Z u; < +oo0.
iel

Exemple 1.4

On veut déterminer la nature de la famille ( pour aa € R. Comme il s’agit d’'une famille de

(m + n)a >(m,n)e(N*)2

réels positifs, on peut employer le théoréme de sommation par paquets en remarquant que (N*)? = |_| I, avec I, =
p=>2

{(m,n) € (N*)?, m + n = p}. Ainsi

1 +o0 1 +o00 card(Ip) B +0o0 p— 1

R e M Y

(musez MHWE 2 e,

p—1 1

pO( p—+oo pC(—l

Or donc

— < + = a>2
(m,n)e(N*)2 (m+ n)* ®

Proposition 1.4 Théoréme de Fubini positif

Soit (u; )i, herxg € (R4) une famille de réels positifs. Alors

> w=Z(Zuw) - (Zu)

(i,j)eIxJ i€l \jel JjeJ \iel

REMARQUE. A nouveau, I’égalité est encore valable lorsque 1’un des membres vaut +oo.

Exercice 1.1

q22
1 +oo+oo1 +oop(i 1 +00 1 +00 1 1
D ID I M R e e el —7 g1
a2 T ¢2p2 T =24 1—5 =T "1 =21 q

2 Familles sommables de complexes

Définition 2.1 Famille sommable de réels

Soit (u)je; € R’ une famille de réels. On dit que la famille (4)jey est sommable si la famille (|u;])jey 1'est.

&1 JJ0 Parties positive et négative d’un réel

Pour x € R, on pose x* = max(0, x) et x~ = max(0, —x). Alors x = x* —x" et |x| = x* + x.
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Proposition 2.1

La famille ();ey € R’ est sommable si et seulement si les familles (ujr)jeJ et (1 )jey sont sommables.

Définition 2.2 Somme d’une famille de réels

Soit (w)je; € R’ une famille sommable. On définit la somme de la famille (4)jey en posant

ZMFZ%*—Z“;'

jer jer jel

Définition 2.3 Famille sommable de complexes

Soit (u)je; € C' une famille de complexes. On dit que la famille (4)jey est sommable si la famille (|u;])jey 1est.

Proposition 2.2

La famille ();je; € C’ est sommable si et seulement si les familles (Re(y)))jey et (Im(w))jy sont sommables.

Définition 2.4 Somme d’une famille de complexes

Soit (w)je; € C’ une famille sommable. On définit la somme de la famille (4))jey en posant

Z u; = Z Re(y) + 1 Z Im(w;)

jer jel jel

Exemple 2.1

+q

1
Soit g € C tel que |g| < 1. Alors la famille (q'”')neZ est sommable de somme T

Notation 2.1

L’ensemble des familles sommables de K est noté £1(J, K) ou plus simplement £1(J) s’il n’ya pas d’ambiguité.

REMARQUE. Si ())ic; € ¢'(J), alors pour tout K € P(J), (u)kek € € (K).

Proposition 2.3 Invariance de la somme par permutation

Soient (4))jey € £1(J, K) et @ une permutation de J. Alors

Z Up(j) = Z i

jel jel
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Proposition 2.4

Soient (4j)jey € C’ et Vjer € (R,)' telles que [ujl < vuj pour tout j € J. Si (vj);ey est sommable, alors (u)jy 1'est
également.

Proposition 2.5 Linéarité de la somme

Soit ())jes> (V)jer) € €*(J, K). Alors pour tout (A, ) € K2,

* la famille (Au; + pvy)je; € €'(J,K);

DR RS TR IR DITE

jel jel jel

Proposition 2.6 Lien entre série et famille sommable

Soit (t,)peny € KN une suite numérique. La famille (u,,),en st sommable si et seulement si la série Z u,, converge
neN
absolument. Dans ce cas, la somme de la famille (u,,),en est la somme de la série Z Uy.
nen

REMARQUE. Dans le cadre des séries, la notation Z u,, peut étre ambigué puisqu’elle peut donc désigner a la fois une

neN
série (i.e. la suite des sommes partielles) et la somme de la famille (u,),en-

Proposition 2.7 Sommation par paquets

Soient J = |_|Ji et (uj)jey € £1(J,C). Alors
iel

2 =

i€l jel; Jjel
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Exemple 2.2

Soit z € C tel que |z| < 1. On souhaite montrer que

+0o0 n
5= -
n_11_22n+1 - 1—2z

- - n - - . . o £ I
Fixons n € N. Puisque |z2"| < 1, on obtient en faisant intervenir une série géométrique,

Zzn +00
n n+1 n
- Z2n+1 = ZZ Z Z2 k _ Z Z2 (2k+1)
k=0 k=0

Pour n € N, on pose alors J,, = {2"(2k + 1), k € N}. En partitionnant N* suivant la valuation 2-adique, on montre que

(J,)nen est une partition de N*. Comme la série zJ converge absolument, la famille (Z])JeN* est sommable et le
JjeN*
théoréme de sommation par paquets permet alors d’affirmer que

+00 +00

Z Z Z2"@k+1) Z 7

n=1k=0

Ce qui peut encore s’écrire d’apres ce qui précede et en reconnaissant dans le second membre la somme d’une série
géométrique :

+oo n
3= :
= 1 _ Zzn+1 1 —z

Proposition 2.8 Théoréme de Fubini

Soit (u; j)i, jeixs € £1(I x I, KK). Alors les familles (Z u; jier et (Z u; j)jey sont sommables et

jel iel
> =3 (Zu)- 3 (Zw)
(i,j)elxy iel \jeJ jel \iel

Exemple 2.3

+0o0 1 7'[2
On admet dans la suite que {(2) = Z Pl

n=1 l)n
La série Z ( converge absolument i.e. la famille <( 5 ) est sommable. On peut donc appliquer le théoréme

neN*
de sommation par paquets avec la partition N* = {2k, k € N*}u {2k + 1, k € N} :
y e Zm . Z Ll y L
n2 ak2 L2k +1)2 4 &2k +1)?

Mais en utilisant cette méme partition,

+00

1 1 +00 1
42) = Z Pl Z 4k2 + Z (2k+1)2 = Zg(z)-i_kZ::O(Zk+1)2

n=1

On en déduit que

+o00 _1\n 2
> - lo=-T
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Exemple 2.4
(="
On veut calculer (m,n%xN* D )
Montrons d’abord la sommabilité de la famille ( 2(—1)n _ ) - On applique le théoreme de Fubini
positif : e (m,n)eNxN*
1 +00 +00
(m,n)ENXN* (m+n?)(m+n?+1) Zl mZO m + n2 Cm+ n2 +1 Z nz +oo

(="

(m+n2)(m+ n? + 1))(m,n)eN><N*

La famille ( est donc sommable et on peut appliquer le théoréme de Fubini :

( 1) +00 +0c0 1 o0
n

2 2 ( 1) 2 2

(munjensxs (M +n2)(m+n? +1) nZl mzzo m+n2 m+n2+1 Z:

Finalement, en utilisant I"exemple 2.3

(=" _
(m+n)(m+n2+1) 12

(m,n)eNxN*

ATTENTION! On ne peut pas toujours permuter I’ordre de sommation. Par exemple, en prenant

2p+1 p p+1
Apg = - -
P4 p+q+2 p+q+1 p+q+3
On obtient
+00 +00 +o0 +00
DD apg=1 et 22 =0
p=0q=0 q=0p=0

Ceci prouve en particulier que la famille (ap g)(p,q)en2 N'est pas sommable sinon les deux sommes précédentes seraient
égales en vertu du théoreme de Fubini.

Proposition 2.9 Produit de deux familles sommables

Soient (;);er et (V))jey deux familles sommables. Alors la famille (u;0;)(;, jyerxy €st sommable et

% = (%u)(%v)

(i,j)eIx] iel ieJ

REMARQUE. Par récurrence, le résultat précédent s’étend a un produit d’un nombre fini de familles sommables.

3 Produit de Cauchy

Définition 3.1 Produit de Cauchy

Soient Z a, et Z b,, deux séries numériques. On appelle produit de Cauchy de ces deux séries la série Z ¢, ol

neN neN neN
n n
Cp = Z agb,_i = Z a;,_iby pour tout n € N.
k=0 k=0
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Proposition 3.1

Soient Z a, et Z b,, deux séries numériques absolument convergentes. Alors leur produit de Cauchy Z cy, est une

neN neN

série absolument convergente. De plus

neN

+o00

> a,

%

)z

+o0
2, ¢n
n=0

Exemple 3.1

Soit (a, b) € C2. Les séries 2

neN

n

%etz

n
L bsol d i a et eP, On vérifi
7l sont absolument convergentes € sommes respectlves e” ete”. On verifie

neN "

facilement que leur produit de Cauchy est Z

. On en déduit que e = P,

(a+b)"
n!

neN
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