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Familles sommables

𝕂 désigne le corps ℝ ou ℂ.

1 Familles de réels positifs

Définition 1.1 Somme d’une famille de réels positifs

Soit (𝑢𝑗)𝑗∈J ∈ (ℝ+)
J une famille de réels positifs. Notons 𝒫𝑓(J) l’ensemble des parties finies de J. On pose

∑
𝑗∈J

𝑢𝑗 = sup {∑
𝑗∈K

𝑢𝑗, K ∈ 𝒫𝑓(J)} ∈ [0, +∞]

Remarque. Dans le cas où I = ℕ, la somme de la suite positive (𝑢𝑛)𝑛∈ℕ est tout simplement la somme de la série

∑
𝑛∈ℕ

𝑢𝑛. Si la série diverge,
+∞
∑
𝑛=0

𝑢𝑛 = +∞.

Proposition 1.1 Invariance de la somme par permutation

Soient (𝑢𝑗)𝑗∈J ∈ (ℝ+)J une famille de réels positifs et φ une permutation de J. Alors

∑
𝑗∈J

𝑢φ(𝑗) = ∑
𝑗∈J

𝑢𝑗

Définition 1.2 Famille sommable de réels positifs

Soit (𝑢𝑗)𝑗∈J ∈ (ℝ+)
J une famille de réels positifs. On dit que (𝑢𝑗)𝑗∈J est sommable si ∑

𝑗∈J
𝑢𝑗 < +∞.

Remarque. Soient (𝑎𝑗)𝑗∈J et (𝑏𝑗)𝑗∈J deux familles de réels tels que 0 ≤ 𝑎𝑗 ≤ 𝑏𝑗 pour tout 𝑗 ∈ J. Si (𝑏𝑗)𝑗∈J est sommable,
alors (𝑎𝑗)𝑗∈J également.

Exemple 1.1

Soit 𝑞 ∈ [0, 1[. La famille (𝑞|𝑛|)𝑛∈ℤ est sommable. En effet, si J est une partie finie de ℤ, il existe N ∈ ℕ tel que
J ⊂ ⟦−N,N⟧. Alors

∑
𝑛∈J

𝑞|𝑛| ≤
N
∑

𝑛=−N
𝑞|𝑛| = 1 + 2𝑞

1 − 𝑞N

1 − 𝑞 ≤ 1 +
2𝑞
1 − 𝑞 =

1 + 𝑞
1 − 𝑞

La somme de la famille (𝑞|𝑛|)𝑛∈ℤ est 1 + 𝑞
1 − 𝑞 puisque

lim
N→+∞

N
∑

𝑛=−N
𝑞|𝑛| =

1 + 𝑞
1 − 𝑞
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Exemple 1.2

La famille ( 1𝑝𝑞)(𝑝,𝑞)∈(ℕ∗)2
n’est pas sommable. En effet, posons JN = ⟦1,N⟧2 pour tout N ∈ ℕ∗. Alors

∑
(𝑝,𝑞)∈JN

1
𝑝𝑞 = (

N
∑
𝑛=1

1
𝑛)

2

⟶
N→+∞

+∞

puisque la série harmonique diverge vers +∞.

Proposition 1.2 Opérations

Somme Soient (𝑢𝑗)𝑗∈J et (𝑣𝑗)𝑗∈J des familles de réels positifs. Alors ∑
𝑗∈J

𝑢𝑗 + 𝑣𝑗 = ∑
𝑗∈J

𝑢𝑗 + ∑
𝑗∈J

𝑣𝑗.

Multiplication par un réel positif Soient (𝑢𝑗)𝑗∈J une famille de réels positifs et λ un réel positif. Alors ∑
𝑗∈J

λ𝑢𝑗 = λ∑
𝑗∈J

𝑢𝑗.

Remarque. On utilise les conventions de calcul suivantes dans [0, +∞] :

• (+∞) + (+∞) = +∞ ;

• pour λ > 0, λ × (+∞) = +∞ ;

• 0 × (+∞).

Proposition 1.3 Sommation par paquets

Soit J = ⨆
𝑖∈I

J𝑖 et (𝑢𝑗)𝑗∈J ∈ (ℝ+)J une famille de réels positifs. Alors

∑
𝑖∈I

∑
𝑗∈J𝑖

𝑢𝑗 = ∑
𝑗∈J

𝑢𝑗

Remarque. L’égalité est encore valable lorsque l’un des membres vaut +∞.

Exemple 1.3

On souhaite calculer
+∞
∑
𝑛=1

1
(2𝑛 + 1)2

en admettant que ζ(2) =
+∞
∑
𝑛=1

1
𝑛2 =

π2
6 .

En utilisant la partition ℕ∗ = {2𝑘, 𝑘 ∈ ℕ∗} ⊔ {2𝑘 + 1, 𝑘 ∈ ℕ},

ζ(2) =
+∞
∑
𝑛=1

1
𝑛2 =

+∞
∑
𝑘=1

1
4𝑘2 +

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

= 1
4ζ(2) +

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

On en déduit que
+∞
∑
𝑘=0

1
(2𝑘 + 1)2

= 3
4ζ(2) =

π2
8

http://lgarcin.github.io 2

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Méthode

Pour montrer qu’une famille de réels positifs (𝑢𝑖)𝑖∈I est sommable, on peut employer le théorème de sommation par
paquets ou le théorème de Fubini positif pour montrer que ∑

𝑖∈I
𝑢𝑖 < +∞.

Exemple 1.4

On veut déterminer la nature de la famille ( 1
(𝑚 + 𝑛)α )(𝑚,𝑛)∈(ℕ∗)2

pour α ∈ ℝ. Comme il s’agit d’une famille de

réels positifs, on peut employer le théorème de sommation par paquets en remarquant que (ℕ∗)2 = ⨆
𝑝≥2

I𝑝 avec I𝑝 =

{(𝑚, 𝑛) ∈ (ℕ∗)2, 𝑚 + 𝑛 = 𝑝}. Ainsi

∑
(𝑚,𝑛)∈(ℕ∗)2

1
(𝑚 + 𝑛)α

=
+∞
∑
𝑝=2

∑
(𝑚,𝑛)∈I𝑝

1
(𝑚 + 𝑛)α

=
+∞
∑
𝑝=2

card(I𝑝)
𝑝α =

+∞
∑
𝑝=2

𝑝 − 1
𝑝α

Or 𝑝 − 1
𝑝α ∼

𝑝→+∞

1
𝑝α−1 donc

∑
(𝑚,𝑛)∈(ℕ∗)2

1
(𝑚 + 𝑛)α

< +∞ ⟺ α > 2

Proposition 1.4 Théorème de Fubini positif

Soit (𝑢𝑖,𝑗)(𝑖,𝑗)∈I×J ∈ (ℝ+)I×J une famille de réels positifs. Alors

∑
(𝑖,𝑗)∈I×J

𝑢𝑖,𝑗 = ∑
𝑖∈I

(∑
𝑗∈J

𝑢𝑖,𝑗) = ∑
𝑗∈J

(∑
𝑖∈I

𝑢𝑖,𝑗)

Remarque. A nouveau, l’égalité est encore valable lorsque l’un des membres vaut +∞.

Exercice 1.1

On souhaite calculer la somme de la famille ( 1𝑞𝑝 )𝑝,𝑞≥2
.

∑
𝑝,𝑞≥2

1
𝑞𝑝 =

+∞
∑
𝑞=2

+∞
∑
𝑝=2

1
𝑞𝑝 =

+∞
∑
𝑞=2

1
𝑞2 ⋅

1
1 − 1

𝑞

=
+∞
∑
𝑞=2

1
𝑞2 − 𝑞 =

+∞
∑
𝑞=2

1
𝑞 − 1 −

1
𝑞 = 1

2 Familles sommables de complexes

Définition 2.1 Famille sommable de réels

Soit (𝑢𝑗)𝑗∈J ∈ ℝJ une famille de réels. On dit que la famille (𝑢𝑗)𝑗∈J est sommable si la famille (|𝑢𝑗|)𝑗∈J l’est.

Rappel Parties positive et négative d’un réel

Pour 𝑥 ∈ ℝ, on pose 𝑥+ = max(0, 𝑥) et 𝑥− = max(0, −𝑥). Alors 𝑥 = 𝑥+ − 𝑥− et |𝑥| = 𝑥+ + 𝑥−.
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Proposition 2.1

La famille (𝑢𝑗)𝑗∈J ∈ ℝJ est sommable si et seulement si les familles (𝑢+𝑗 )𝑗∈J et (𝑢−𝑗 )𝑗∈J sont sommables.

Définition 2.2 Somme d’une famille de réels

Soit (𝑢𝑗)𝑗∈J ∈ ℝJ une famille sommable. On définit la somme de la famille (𝑢𝑗)𝑗∈J en posant

∑
𝑗∈J

𝑢𝑗 = ∑
𝑗∈J

𝑢+𝑗 − ∑
𝑗∈J

𝑢−𝑗

Définition 2.3 Famille sommable de complexes

Soit (𝑢𝑗)𝑗∈J ∈ ℂJ une famille de complexes. On dit que la famille (𝑢𝑗)𝑗∈J est sommable si la famille (|𝑢𝑗|)𝑗∈J l’est.

Proposition 2.2

La famille (𝑢𝑗)𝑗∈J ∈ ℂJ est sommable si et seulement si les familles (Re(𝑢𝑗))𝑗∈J et (Im(𝑢𝑗))𝑗∈J sont sommables.

Définition 2.4 Somme d’une famille de complexes

Soit (𝑢𝑗)𝑗∈J ∈ ℂJ une famille sommable. On définit la somme de la famille (𝑢𝑗)𝑗∈J en posant

∑
𝑗∈J

𝑢𝑗 = ∑
𝑗∈J

Re(𝑢𝑗) + 𝑖 ∑
𝑗∈J

Im(𝑢𝑗)

Exemple 2.1

Soit 𝑞 ∈ ℂ tel que |𝑞| < 1. Alors la famille (𝑞|𝑛|)𝑛∈ℤ est sommable de somme 1 + 𝑞
1 − 𝑞 .

Notation 2.1

L’ensemble des familles sommables de 𝕂J est noté ℓ1(J, 𝕂) ou plus simplement ℓ1(J) s’il n’ya pas d’ambiguïté.

Remarque. Si (𝑢𝑗)𝑗∈J ∈ ℓ1(J), alors pour tout K ∈ 𝒫(J), (𝑢𝑘)𝑘∈K ∈ ℓ1(𝕂).

Proposition 2.3 Invariance de la somme par permutation

Soient (𝑢𝑗)𝑗∈J ∈ ℓ1(J, 𝕂) et φ une permutation de J. Alors

∑
𝑗∈J

𝑢φ(𝑗) = ∑
𝑗∈J

𝑢𝑗
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Proposition 2.4

Soient (𝑢𝑗)𝑗∈J ∈ ℂJ et (𝑣𝑗)𝑗∈J ∈ (ℝ+)J telles que |𝑢𝑗| ≤ 𝑣𝑗 pour tout 𝑗 ∈ J. Si (𝑣𝑗)𝑗∈J est sommable, alors (𝑢𝑗)𝑗∈J l’est
également.

Proposition 2.5 Linéarité de la somme

Soit ((𝑢𝑗)𝑗∈J, (𝑣𝑗)𝑗∈J) ∈ ℓ1(J, 𝕂). Alors pour tout (λ, μ) ∈ 𝕂2,

• la famille (λ𝑢𝑗 + μ𝑣𝑗)𝑗∈J ∈ ℓ1(J, 𝕂) ;

• ∑
𝑗∈J

λ𝑢𝑗 + μ𝑣𝑗 = λ∑
𝑗∈I

𝑣𝑗 + μ∑
𝑗∈J

𝑣𝑗.

Proposition 2.6 Lien entre série et famille sommable

Soit (𝑢𝑛)𝑛∈ℕ ∈ 𝕂ℕ une suite numérique. La famille (𝑢𝑛)𝑛∈ℕ est sommable si et seulement si la série ∑
𝑛∈ℕ

𝑢𝑛 converge

absolument. Dans ce cas, la somme de la famille (𝑢𝑛)𝑛∈ℕ est la somme de la série ∑
𝑛∈ℕ

𝑢𝑛.

Remarque. Dans le cadre des séries, la notation ∑
𝑛∈ℕ

𝑢𝑛 peut être ambiguë puisqu’elle peut donc désigner à la fois une

série (i.e. la suite des sommes partielles) et la somme de la famille (𝑢𝑛)𝑛∈ℕ.

Proposition 2.7 Sommation par paquets

Soient J = ⨆
𝑖∈I

J𝑖 et (𝑢𝑗)𝑗∈J ∈ ℓ1(J, ℂ). Alors

∑
𝑖∈I

∑
𝑗∈J𝑖

𝑢𝑗 = ∑
𝑗∈J

𝑢𝑗
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Exemple 2.2

Soit 𝑧 ∈ ℂ tel que |𝑧| < 1. On souhaite montrer que

+∞
∑
𝑛=1

𝑧2𝑛

1 − 𝑧2𝑛+1
= 𝑧
1 − 𝑧

Fixons 𝑛 ∈ ℕ. Puisque |𝑧2𝑛| < 1, on obtient en faisant intervenir une série géométrique,

𝑧2𝑛

1 − 𝑧2𝑛+1
= 𝑧2𝑛

+∞
∑
𝑘=0

𝑧2𝑛+1𝑘 =
+∞
∑
𝑘=0

𝑧2𝑛(2𝑘+1)

Pour 𝑛 ∈ ℕ, on pose alors J𝑛 = {2𝑛(2𝑘 + 1), 𝑘 ∈ ℕ}. En partitionnant ℕ∗ suivant la valuation 2-adique, on montre que
(J𝑛)𝑛∈ℕ est une partition de ℕ∗. Comme la série ∑

𝑗∈ℕ∗
𝑧𝑗 converge absolument, la famille (𝑧𝑗)𝑗∈ℕ∗ est sommable et le

théorème de sommation par paquets permet alors d’affirmer que

+∞
∑
𝑛=1

+∞
∑
𝑘=0

𝑧2𝑛(2𝑘+1) =
+∞
∑
𝑗=1

𝑧𝑗

Ce qui peut encore s’écrire d’après ce qui précède et en reconnaissant dans le second membre la somme d’une série
géométrique :

+∞
∑
𝑛=1

𝑧2𝑛

1 − 𝑧2𝑛+1
= 𝑧
1 − 𝑧

Proposition 2.8 Théorème de Fubini

Soit (𝑢𝑖,𝑗)(𝑖,𝑗)∈I×J ∈ ℓ1(I × J, 𝕂). Alors les familles (∑
𝑗∈J

𝑢𝑖,𝑗)𝑖∈I et (∑
𝑖∈I

𝑢𝑖,𝑗)𝑗∈J sont sommables et

∑
(𝑖,𝑗)∈I×J

𝑢𝑖,𝑗 = ∑
𝑖∈I

(∑
𝑗∈J

𝑢𝑖,𝑗) = ∑
𝑗∈J

(∑
𝑖∈I

𝑢𝑖,𝑗)

Exemple 2.3

On admet dans la suite que ζ(2) =
+∞
∑
𝑛=1

1
𝑛2 =

π2
6 .

La série ∑ (−1)𝑛

𝑛2 converge absolument i.e. la famille ((−1)
𝑛

𝑛2 )
𝑛∈ℕ∗

est sommable. On peut donc appliquer le théorème

de sommation par paquets avec la partition ℕ∗ = {2𝑘, 𝑘 ∈ ℕ∗} ⊔ {2𝑘 + 1, 𝑘 ∈ ℕ} :

+∞
∑
𝑛=1

(−1)𝑛

𝑛2 =
+∞
∑
𝑘=1

1
4𝑘2 −

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

= 1
4ζ(2) −

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

Mais en utilisant cette même partition,

ζ(2) =
+∞
∑
𝑛=1

1
𝑛2 =

+∞
∑
𝑘=1

1
4𝑘2 +

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

= 1
4ζ(2) +

+∞
∑
𝑘=0

1
(2𝑘 + 1)2

On en déduit que
+∞
∑
𝑛=1

(−1)𝑛

𝑛2 = −12ζ(2) = −π
2

12
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Exemple 2.4

On veut calculer ∑
(𝑚,𝑛)∈ℕ×ℕ∗

(−1)𝑛

(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1)
.

Montrons d’abord la sommabilité de la famille ( (−1)𝑛

(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1))(𝑚,𝑛)∈ℕ×ℕ∗
. On applique le théorème de Fubini

positif :

∑
(𝑚,𝑛)∈ℕ×ℕ∗

1
(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1)

=
+∞
∑
𝑛=1

+∞
∑
𝑚=0

1
𝑚 + 𝑛2 −

1
𝑚 + 𝑛2 + 1 =

+∞
∑
𝑛=1

1
𝑛2 < +∞

La famille ( (−1)𝑛

(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1))(𝑚,𝑛)∈ℕ×ℕ∗
est donc sommable et on peut appliquer le théorème de Fubini :

∑
(𝑚,𝑛)∈ℕ×ℕ∗

(−1)𝑛

(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1)
=

+∞
∑
𝑛=1

(−1)𝑛
+∞
∑
𝑚=0

1
𝑚 + 𝑛2 −

1
𝑚 + 𝑛2 + 1 =

+∞
∑
𝑛=1

(−1)𝑛

𝑛2

Finalement, en utilisant l’exemple 2.3,

∑
(𝑚,𝑛)∈ℕ×ℕ∗

(−1)𝑛

(𝑚 + 𝑛2)(𝑚 + 𝑛2 + 1)
= −π

2

12

Attention!� On ne peut pas toujours permuter l’ordre de sommation. Par exemple, en prenant

𝑎𝑝,𝑞 =
2𝑝 + 1
𝑝 + 𝑞 + 2 −

𝑝
𝑝 + 𝑞 + 1 −

𝑝 + 1
𝑝 + 𝑞 + 3

On obtient
+∞
∑
𝑝=0

+∞
∑
𝑞=0

𝑎𝑝,𝑞 = 1 et
+∞
∑
𝑞=0

+∞
∑
𝑝=0

𝑎𝑝,𝑞 = 0

Ceci prouve en particulier que la famille (𝑎𝑝,𝑞)(𝑝,𝑞)∈ℕ2 n’est pas sommable sinon les deux sommes précédentes seraient
égales en vertu du théorème de Fubini.

Proposition 2.9 Produit de deux familles sommables

Soient (𝑢𝑖)𝑖∈I et (𝑣𝑗)𝑗∈J deux familles sommables. Alors la famille (𝑢𝑖𝑣𝑗)(𝑖,𝑗)∈I×J est sommable et

∑
(𝑖,𝑗)∈I×J

𝑢𝑖𝑣𝑗 = (∑
𝑖∈I

𝑢𝑖) (∑
𝑖∈J

𝑣𝑗)

Remarque. Par récurrence, le résultat précédent s’étend à un produit d’un nombre fini de familles sommables.

3 Produit de Cauchy

Définition 3.1 Produit de Cauchy

Soient ∑
𝑛∈ℕ

𝑎𝑛 et ∑
𝑛∈ℕ

𝑏𝑛 deux séries numériques. On appelle produit de Cauchy de ces deux séries la série ∑
𝑛∈ℕ

𝑐𝑛 où

𝑐𝑛 =
𝑛
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 =
𝑛
∑
𝑘=0

𝑎𝑛−𝑘𝑏𝑘 pour tout 𝑛 ∈ ℕ.
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Proposition 3.1

Soient ∑
𝑛∈ℕ

𝑎𝑛 et ∑
𝑛∈ℕ

𝑏𝑛 deux séries numériques absolument convergentes. Alors leur produit de Cauchy ∑
𝑛∈ℕ

𝑐𝑛 est une

série absolument convergente. De plus
+∞
∑
𝑛=0

𝑐𝑛 = (
+∞
∑
𝑛=0

𝑎𝑛) (
+∞
∑
𝑛=0

𝑏𝑛)

Exemple 3.1

Soit (𝑎, 𝑏) ∈ ℂ2. Les séries ∑
𝑛∈ℕ

𝑎𝑛
𝑛! et ∑

𝑛∈ℕ

𝑏𝑛
𝑛! sont absolument convergentes de sommes respectives 𝑒𝑎 et 𝑒𝑏. On vérifie

facilement que leur produit de Cauchy est ∑
𝑛∈ℕ

(𝑎 + 𝑏)𝑛
𝑛! . On en déduit que 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏.
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