
© Laurent Garcin MP Dumont d’Urville

Fonctions d’une variable réelle
Toutes les fonctions considérées dans ce chapitre seront des d’une variable réelle (i.e. l’ensemble de départ est ℝ) à valeurs

dans ℝ ou ℂ.

1 Généralités

1.1 Ensemble de définition
On rappelle qu’une fonction (au contraire d’une application) dont l’ensemble de départ est ℝ n’est pas forcément définie

sur ℝ en entier.

Définition 1.1 Ensemble de définition

Soit 𝑓∶ ℝ → ℝ une fonction. On appelle ensemble de définition de 𝑓 l’ensemble des 𝑥 ∈ ℝ pour lesquels 𝑓(𝑥) est
défini.

Exemple 1.1

L’ensemble de définition de 𝑥 ↦ √𝑥 est ℝ+.

Exercice 1.1

Déterminer le domaine de définition de 𝑥 ↦√
𝑥 + 1
𝑥 − 3 .

1.2 Représentation graphique

Rappel Représentation graphique

La représentation graphique d’une courbe dans un repère orthonormé est l’ensemble des points de coordonnées (𝑥, 𝑓(𝑥))
où 𝑥 décrit l’ensemble de définition.

Représentation graphique d’une bijection réciproque

Soit 𝑓 une fonction bijective. Les représentations gra-
phiques de 𝑓 et 𝑓−1 sont symétriques par rapport à la pre-
mière bissectrice.
En effet, si on pose 𝑦 = 𝑓(𝑥), les points de coordonnées
(𝑥, 𝑓(𝑥)) et (𝑦, 𝑓−1(𝑦)) sont symétriques par rapport à la
première bissectrice.
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Fonctions associées

La fonction de référence est représentée en trait pointillé tandis que la fonction associée est représentée en trait continu.

Représentation graphique de 𝑥 ↦ 𝑓(𝑥) + 𝑎

Translation de vecteur 𝑎 ⃗𝚥

Représentation graphique de 𝑥 ↦ 𝑓(𝑥 + 𝑎)

Translation de vecteur −𝑎 ⃗𝚤

Représentation graphique de 𝑥 ↦ λ𝑓(𝑥)

Dilatation verticale d’un facteur λ

Représentation graphique de 𝑥 ↦ 𝑓(λ𝑥)

Dilatation horizontale d’un facteur 1λ

Représentation graphique de 𝑥 ↦ 𝑎 − 𝑓(𝑥)

Symétrie d’axe 𝑦 = 𝑎
2

Représentation graphique de 𝑥 ↦ 𝑓(𝑎 − 𝑥)

Symétrie d’axe 𝑥 = 𝑎
2
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1.3 Parité et périodicité

Définition 1.2 Parité

Soit 𝑓 une fonction.
On dit que 𝑓 est paire si

• le domaine de définition D𝑓 de 𝑓 est symétrique par rapport à 0 :
∀𝑥 ∈ D𝑓, −𝑥 ∈ D𝑓 ;

• ∀𝑥 ∈ D𝑓, 𝑓(−𝑥) = 𝑓(𝑥).

On dit que 𝑓 est impaire si

• le domaine de définition D𝑓 de 𝑓 est symétrique par rapport à 0 :
∀𝑥 ∈ D𝑓, −𝑥 ∈ D𝑓 ;

• ∀𝑥 ∈ D𝑓, 𝑓(−𝑥) = −𝑓(𝑥).

Remarque. Si 𝑓 est une fonction impaire définie en 0, alors 𝑓(0) = 0.

Attention!� Une fonction peut n’être ni paire ni impaire !

Remarque. Il n’y a évidemment pas besoin de vérifier la condition sur le domaine de définition s’il est égal à ℝ.

Exemple 1.2

La fonction cos est paire. Les fonctions sin et tan sont impaires.
Pour 𝑛 ∈ ℤ, la fonction 𝑥 ↦ 𝑥𝑛 a la parité de 𝑛.

Interprétation graphique

• La représentation graphique d’une fonction paire est symétrique par rapport à l’axe des ordonnées.

• La représentation graphique d’une fonction impaire est symétrique par rapport à l’origine.

Définition 1.3 Périodicité

Soit 𝑓 une fonction et T un réel strictement positif. On dit que 𝑓 est T-périodique si

• le domaine de définition D𝑓 de 𝑓 est «T-périodique» : ∀𝑥 ∈ D𝑓, 𝑥 + T ∈ D𝑓 ;

• ∀𝑥 ∈ D𝑓, 𝑓(𝑥 + T) = 𝑓(𝑥).

Remarque. Il n’y a évidemment pas besoin de vérifier la condition sur le domaine de définition s’il est égal à ℝ.

Remarque. Si 𝑓 est T-périodique, 𝑓(𝑥 + 𝑛T) = 𝑓(𝑥) pour tout 𝑛 ∈ ℤ.
Par conséquent, 𝑓 est également 𝑛T-périodique pour tout 𝑛 ∈ ℕ∗.

Exemple 1.3

Les fonctions cos et sin sont 2π-périodiques. La fonction tan est π-périodique.
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Interprétation graphique

La représentation d’une fonction T-périodique dans une repère (O, ⃗𝚤, ⃗𝚥) est invariante par translation de vecteur T ⃗𝚤.

Remarque. On a également invariance par translation de vecteur 𝑛T ⃗𝚤 pour tout 𝑛 ∈ ℤ.

1.4 Opérations sur les fonctions

Définition 1.4 Somme et produit

Soient 𝑓 et 𝑔 deux fonctions. On définit alors 𝑓 + 𝑔∶ 𝑥 ↦ 𝑓(𝑥) + 𝑔(𝑥) et 𝑓𝑔∶ 𝑥 ↦ 𝑓(𝑥)𝑔(𝑥).

Rappel Composée

On appelle composée des fonctions 𝑓 et 𝑔 la fonction 𝑔 ∘ 𝑓∶ 𝑥 ↦ 𝑔(𝑓(𝑥)).

Exemple 1.4

La fonction 𝑥 ↦ ln (1 + √𝑥2 + 1) est la composée de la fonction 𝑥 ↦ 𝑥2 + 1 suivie de la fonction 𝑥 ↦ √𝑥 puis de la
fonction 𝑥 ↦ ln(1 + 𝑥).

1.5 Monotonie

Définition 1.5 Monotonie

Soit 𝑓 une fonction définie sur un intervalle I.
On dit que 𝑓 est croissante sur I si

∀(𝑥, 𝑦) ∈ I2, 𝑥 ≤ 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦)

On dit que 𝑓 est décroissante sur I si

∀(𝑥, 𝑦) ∈ I2, 𝑥 ≤ 𝑦 ⟹ 𝑓(𝑥) ≥ 𝑓(𝑦)

On dit que 𝑓 est strictement croissante sur I si

∀(𝑥, 𝑦) ∈ I2, 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦)

On dit que 𝑓 est strictement décroissante sur I si

∀(𝑥, 𝑦) ∈ I2, 𝑥 < 𝑦 ⟹ 𝑓(𝑥) > 𝑓(𝑦)

On dit que 𝑓 est monotone sur I si elle y est croissante ou décroissante.
On dit que 𝑓 est strictement monotone sur I si elle y est strictement croissante ou décroissante.

Attention!� Une fonction peut n’être ni croissante ni décroissante !

Remarque. Du point de vue du vocabulaire, on dit que «𝑓 est monotone sur un intervalle I».
On ne dira JAMAIS «𝑓(𝑥) est monotone pour tout 𝑥 ∈ I». Cela signifierait qu’un réel est monotone.
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Remarque. Une fonction constante est croissante et décroissante au sens large. La réciproque est d’ailleurs vraie : si une
fonction est croissante et décroissante, alors elle est constante.

Remarque. Si 𝑓 est croissante sur I, alors

∀(𝑥, 𝑦) ∈ I2, 𝑓(𝑥) < 𝑓(𝑦) ⟹ 𝑥 < 𝑦

Si 𝑓 est décroissante sur I, alors
∀(𝑥, 𝑦) ∈ I2, 𝑓(𝑥) < 𝑓(𝑦) ⟹ 𝑥 > 𝑦

Si 𝑓 est strictement croissante sur I, alors

∀(𝑥, 𝑦) ∈ I2, 𝑓(𝑥) ≤ 𝑓(𝑦) ⟹ 𝑥 ≤ 𝑦

Si 𝑓 est strictement décroissante sur I, alors

∀(𝑥, 𝑦) ∈ I2, 𝑓(𝑥) ≤ 𝑓(𝑦) ⟹ 𝑥 ≥ 𝑦

Les deux derniers points ne sont plus valables lorsque 𝑓 est croissante ou décroissante au sens large. Par exemple, si 𝑓 est
une fonction constante sur I, on a 𝑓(𝑥) ≤ 𝑓(𝑦) et 𝑓(𝑥) ≥ 𝑓(𝑦) pour tout (𝑥, 𝑦) ∈ I2 mais on ne peut jamais en déduire
que 𝑥 ≤ 𝑦 ou 𝑥 ≥ 𝑦.

Proposition 1.1 Stricte monotonie et injectivité

Une fonction strictement monotone est injective.

Remarque. La réciproque est vraie à condition de considérer une fonction continue sur un intervalle.

Proposition 1.2 Somme de fonctions monotones

• La somme de deux fonctions croissantes est croissante.

• La somme de deux fonctions décroissantes est décroissante.

• La somme de d’une fonction croissante et d’une fonction strictement croissante est strictement croissante.

• La somme de d’une fonction décroissante et d’une fonction strictement décroissante est strictement décroissante.

Remarque. A fortiori, la somme de deux fonctions strictement croissantes (resp. strictement décroissantes) est stricte-
ment croissante (resp. strictement décroissante).

Exemple 1.5

La fonction 𝑥 ↦ 𝑥 + 𝑥3 + 𝑥5 est strictement croissante sur ℝ.

Proposition 1.3 Composition de fonctions monotones

• La composée de deux fonctions monotones de même sens de variation est croissante.

• La composée de deux fonctions monotones de sens de variation opposés est décroissante.

• La composée de deux fonctions strictement monotones de même sens de variation est strictement croissante.

• La composée de deux fonctions strictement monotones de sens de variation opposés est strictement décroissante.
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Exemple 1.6

La fonction 𝑥 ↦ ln(1 + √1 + 𝑥2) est strictement croissante sur ℝ+ et strictement décroissante sur ℝ−.

Attention!� Un produit de fonctions monotones n’est pas forcément monotone. Par exemple, 𝑥 ↦ 𝑥 et 𝑥 ↦ 𝑥3 sont
croissantes sur ℝ mais leur produit 𝑥 ↦ 𝑥4 n’est ni croissant ni décroissant sur ℝ.
Néanmoins, si 𝑓 et 𝑔 sont des fonctions croissantes (resp. décroissantes) et positives, alors leur produit est croissant (resp.
décroissant).
De même, si 𝑓 et 𝑔 sont des fonctions strictement croissantes (resp. strictement décroissantes) et strictement positives,
alors leur produit est strictement croissant (resp. strictement décroissant).

1.6 Fonctions majorées, minorées, bornées

Définition 1.6

Soit 𝑓 une fonction définie sur une partie A de ℝ.
On dit que 𝑓 est majorée sur A si 𝑓(A) est majoré i.e. si

∃M ∈ ℝ, ∀𝑥 ∈ A, 𝑓(𝑥) ≤ M

On dit que 𝑓 est minorée sur A si 𝑓(A) est minoré i.e. si

∃𝑚 ∈ ℝ, ∀𝑥 ∈ A, 𝑓(𝑥) ≥ 𝑚

On dit que 𝑓 est bornée sur A si 𝑓 est majorée et minorée sur A ou encore si 𝑓(A) est bornée i.e.

∃(𝑚,M) ∈ ℝ2, ∀𝑥 ∈ A, 𝑚 ≤ 𝑓(𝑥) ≤ M

Remarque. On dit alors que M est un majorant de 𝑓 sur A et que 𝑚 est un minorant de 𝑓 sur A.

Remarque. Si on ne précise pas la partie A sur laquelle la fonction est majorée/minorée/bornée, c’est que l’on fait
implicitement référence à tout l’ensemble de définition.

Exemple 1.7

La fonction 𝑥 ↦ 𝑥2 est minorée sur ℝ mais elle n’y est pas majorée.
Les fonctions sin et cos sont bornées sur ℝ.

Interprétation graphique

• Une fonction est majorée si sa représentation graphique est située au-dessous d’une droite horizontale.

• Une fonction est minorée si sa représentation graphique est située au-dessus d’une droite horizontale.

• Une fonction est bornée si sa représentation graphique est située entre deux droites horizontales.

Proposition 1.4

Soit 𝑓 une fonction définie sur une partie A de ℝ.
Alors 𝑓 est bornée sur A si et seulement si |𝑓| est majorée sur A.
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Exemple 1.8

Soit𝑓∶ 𝑥 ↦ sin𝑥
2 − cos𝑥 . On souhaite monter que𝑓 est bornée surℝ. Pour tout 𝑥 ∈ ℝ, |𝑓(𝑥)| = | sin𝑥|

2 − cos𝑥 car 2−cos𝑥 > 0.
Or pour tout 𝑥 ∈ ℝ, | sin𝑥| ≤ 1 et 2− cos𝑥 ≥ 1. Par conséquent, pour tout 𝑥 ∈ ℝ, |𝑓(𝑥)| ≤ 1 et 𝑓 est donc bornée sur ℝ.

Proposition 1.5

• Une somme de fonctions majorées est majorée.

• Une somme de fonctions minorées est minorée.

• Une somme et un produit de fonctions bornées sont bornés.

Définition 1.7 Maximum, minimum

Soit 𝑓 une fonction définie sur A.

• On dit que 𝑓 admet un maximum sur A s’il existe 𝑎 ∈ A tel que 𝑓(𝑥) ≤ 𝑓(𝑎) pour tout 𝑥 ∈ A. Le réel M = 𝑓(𝑎)
est alors appelé le maximum de 𝑓 sur A et on note M = max

A
𝑓. On a en fait M = max𝑓(A).

• On dit que 𝑓 admet un minimum sur A s’il existe 𝑏 ∈ A tel que 𝑓(𝑥) ≥ 𝑓(𝑏) pour tout 𝑥 ∈ A. Le réel 𝑚 = 𝑓(𝑏)
est alors appelé le minimum de 𝑓 sur A et on note 𝑚 = min

A
𝑓. On a en fait 𝑚 = min𝑓(A).

Remarque. Un maximum ou un minimum est nécessairement une valeur atteinte par la fonction.

Remarque. Une fonction admettant un maximum (resp. un minimum) est nécessairement majorée (resp. minorée).

Exemple 1.9

La fonction sin admet un minimum et un maximum sur ℝ valant respectivement −1 et 1 car sin (−π2 ) = 1 et sin (π2 ) = 1
et car pour tout 𝑥 ∈ ℝ, −1 ≤ sin𝑥 ≤ 1.

Exemple 1.10

La fonction exponentielle n’admet clairement pas de maximum car elle n’est pas majorée. Elle n’admet pas non plus de
minimum. Soit en effet 𝑏 ∈ ℝ. Alors pour tout 𝑥 < 𝑏, 𝑒𝑥 < 𝑒𝑏 donc l’exponentielle ne peut admettre de minimum en 𝑏.
Ceci étant vrai quelque soit 𝑏 ∈ ℝ, l’exponentielle n’admet pas de minimum.

Attention!� Une fonction majorée (resp. minorée) n’admet pas forcément de maximum (resp. de minimum) comme le
montre l’exemple de la fonction exponentielle.

http://lgarcin.github.io 7

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

2 Continuité

Définition 2.1 Continuité

Soient 𝑓 une fonction définie sur un intervalle I.
On dit que 𝑓 est continue en 𝑎 ∈ I si lim

𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎).

On dit que 𝑓 est continue sur I si 𝑓 est continue en tout 𝑎 ∈ I.

Théorème 2.1 Théorème des valeurs intermédiaires

Soit 𝑓 une fonction continue sur intervalle [𝑎, 𝑏]. Pour tout réel 𝑦 compris entre 𝑓(𝑎) et 𝑓(𝑏), il existe 𝑥 ∈ [𝑎, 𝑏] tel que
𝑦 = 𝑓(𝑥).
Si de plus, 𝑓 est strictement monotone sur [𝑎, 𝑏], ce réel 𝑥 est unique.

Corollaire 2.1 Théorème de la bijection monotone

Soient I un intervalle de ℝ et 𝑓∶ I → ℝ. On suppose que

• 𝑓 est continue sur I ;

• 𝑓 est strictement monotone sur I.

Alors

• 𝑓 réalise une bijection de I sur l’intervalle J = 𝑓(I) ;

• l’application réciproque 𝑓−1∶ J → I est une bijection continue et strictement monotone sur J de même sens de
variation que 𝑓.

De plus, si I = [𝑎, 𝑏], on a

• si 𝑓 est croissante, 𝑓(I) = [𝑓(𝑎), 𝑓(𝑏)] ;

• si 𝑓 est décroissante, 𝑓(I) = [𝑓(𝑏), 𝑓(𝑎)].

On a des résultats analogues si I est un intervalle ouvert ou semi ouvert (𝑎 et 𝑏 pouvant être égaux respectivement à
−∞ et +∞) avec éventuellement des limites. Par exemple, si 𝑓 est une application continue et strictement croissante sur
I =]𝑎, 𝑏], 𝑓 réalise une bijection de I sur 𝑓(I) =] lim

𝑎+
𝑓, 𝑓(𝑏)].

Méthode Nombre de solutions d’une équation

On peut toujours mettre une équation d’inconnue réelle sous la forme 𝑓(𝑥) = 0. L’étude des variations de 𝑓 et le théorème
des valeurs intermédiaires permet d’en déduire le nombre de solutions de cette équation.
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Exemple 2.1

On désire déterminer le nombre de solutions de l’équation 𝑥5 − 5𝑥 + 1 = 0. On pose 𝑓(𝑥) = 𝑥5 − 5𝑥 − 1 pour 𝑥 ∈ ℝ. 𝑓
est dérivable sur ℝ et 𝑓′(𝑥) = 5𝑥4 − 5 = 5(𝑥2 − 1)(𝑥2 + 1). On en déduit le tableau de variations suivant.

𝑥

𝑓′(𝑥)

𝑓(𝑥)

−∞ −1 1 +∞

+ 0 − 0 +

−∞−∞

55

−3−3

+∞+∞

α

0

β

0

γ

0

On déduit du tableau de variations que l’équation 𝑓(𝑥) = 0 admet exactement trois solutions α, β et γ respectivement
dans les intervalles ] −∞,−1[, ] − 1, 1[ et ]1, +∞[.
On utilise en fait trois fois le théorème des valeurs intermédiaires :

• 𝑓 est continue et strictement monotone sur ] −∞,−1], lim
−∞

𝑓 = −∞ et 𝑓(−1) > 0 donc l’équation 𝑓(𝑥) = 0 admet
une unique solution α ∈] −∞,−1[.

• 𝑓 est continue et strictement monotone sur [−1, 1], 𝑓(−1) > 0 et 𝑓(1) > 0 donc l’équation 𝑓(𝑥) = 0 admet une
unique solution β ∈] − 1, 1[.

• 𝑓 est continue et strictement monotone sur [1, +∞[, 𝑓(1) < 0 et lim
+∞

𝑓 = +∞ donc l’équation 𝑓(𝑥) = 0 admet une
unique solution γ ∈]1, +∞[.

On peut également déduire du tableau de variations que l’ensemble des solutions de l’inéquation 𝑓(𝑥) ≤ 0 est ]−∞, α]∪
[β, γ].
De même, l’ensemble des solutions de l’inéquation 𝑓(𝑥) > 0 est ]α, β[∪]γ, +∞[.

3 Dérivation

3.1 Taux de variation et dérivée

Définition 3.1 Taux de variation

Soient 𝑓 une fonction définie sur un intervalle I et 𝑎 ∈ I. On appelle taux de variation de 𝑓 en 𝑎 la fonction

τ𝑎𝑓∶ {
I ∖ {𝑎} ⟶ ℝ

𝑥 ⟼
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎

Définition 3.2 Dérivabilité et nombre dérivé

Soient 𝑓 une fonction définie sur un intervalle I et 𝑎 ∈ I. On dit que 𝑓 est dérivable en 𝑎 si son taux de variation en
𝑎 admet une limite finie en 𝑎. Dans ce cas, on note cette limite 𝑓′(𝑎) et on l’appelle nombre dérivé de 𝑓 en 𝑎 ou, plus
simplement, dérivée de 𝑓 en 𝑎.

http://lgarcin.github.io 9

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Exemple 3.1

On en déduit les limites usuelles suivantes.

lim
𝑥→0

𝑒𝑥 − 1
𝑥 = 1 lim

𝑥→0

ln(1 + 𝑥)
𝑥 = 1

lim
𝑥→0

sin𝑥
𝑥 = 1 lim

𝑥→0

tan𝑥
𝑥 = 1

lim
𝑥→0

sh𝑥
𝑥 = 1 lim

𝑥→0

th𝑥
𝑥 = 1

lim
𝑥→0

arcsin𝑥
𝑥 = 1 lim

𝑥→0

arctan𝑥
𝑥 = 1

Définition 3.3 Dérivabilité sur un intervalle

Soit 𝑓 une fonction définie sur un intervalle I. On dit que 𝑓 est dérivable sur l’intervalle I si 𝑓 est dérivable en tout point
de I.
L’application 𝑓′ ∶ 𝑥 ↦ 𝑓′(𝑥) est appelée fonction dérivée de 𝑓 ou, plus simplement, dérivée de 𝑓.

Remarque. On ne dira JAMAIS que 𝑓(𝑥) est dérivable pour tout 𝑥 ∈ A. Cela signifierait qu’un réel est dérivable.

Proposition 3.1 Dérivabilité et continuité

Soient 𝑓 une fonction définie sur un intervalle I et 𝑎 ∈ I.

• Si 𝑓 est dérivable en 𝑎, alors 𝑓 est continue en 𝑎.

• Si 𝑓 est dérivable sur I, alors 𝑓 est continue sur I.

Définition 3.4 Tangente

Soit 𝑓 une fonction dérivable en 𝑎. La droite passant par le point de la courbe représentative de 𝑓 d’abscisse 𝑎 et de
coefficient directeur 𝑓′(𝑎) s’appelle la tangente à la courbe représentative de 𝑓 au point d’abscisse 𝑎.
Elle admet pour équation 𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎).

Remarque. En particulier, si𝑓′(𝑎) = 0, la courbe représentative de𝑓 admet une tangente horizontale au point d’abscisse
𝑎.
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Interprétation géométrique

τ𝑎𝑓(𝑥) est la pente de la sécante passant par
les ponts d’abscisse 𝑎 et 𝑥. Quand 𝑥 tend
vers 𝑎, la sécante tend vers la tangente au
point d’abscisse 𝑎. 𝑓′(𝑎) est donc la pente
de la tangente.

3.2 Dérivation et opérations

Proposition 3.2 Opérations arithmétiques

Soient 𝑓 et 𝑔 deux fonctions dérivables sur A.

Combinaison linéaire Pour tout (λ, μ) ∈ ℝ2, λ𝑓 + μ𝑔 est dérivable sur A et (λ𝑓 + μ𝑔)′ = λ𝑓′ + μ𝑔′.

Produit 𝑓𝑔 est dérivable sur A et (𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′.

Quotient Si 𝑔 ne s’annule pas sur A, alors
𝑓
𝑔 est dérivable sur A et (

𝑓
𝑔 )

′
=
𝑓′𝑔 − 𝑓𝑔′

𝑔2 .

Proposition 3.3 Composition

On suppose que

• 𝑓 est dérivable sur I ;

• 𝑔 est dérivable sur J ;

• 𝑓(I) ⊂ J.

Alors 𝑔 ∘ 𝑓 est dérivable sur I et (𝑔 ∘ 𝑓)′ = (𝑔′ ∘ 𝑓)𝑓′.
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Exemple 3.2

Considérons la fonction 𝑓∶ 𝑥 ↦ ln(1 + √𝑥2 − 1). On remarque que 𝑓 est la composée de 𝑔∶ 𝑥 ↦ 𝑥2 − 1 suivie de
ℎ∶ 𝑥 ↦ 1 + √𝑥 puis de 𝑖 ∶ 𝑥 ↦ ln𝑥.
Justifions d’abord la dérivabilité :

• 𝑔∶ 𝑥 ↦ 𝑥2 − 1 est dérivable sur ]1, +∞[ à valeurs dans ℝ∗
+ ;

• ℎ∶ 𝑥 ↦ 1 + √𝑥 est dérivable sur ℝ∗
+ à valeurs dans ]1, +∞[ ;

• 𝑖 ∶ 𝑥 ↦ ln𝑥 est dérivable sur ]1, +∞[.

Par conséquent, 𝑓 est dérivable sur ]1, +∞[. On démontre de la même manière que 𝑓 est dérivable sur ] −∞,−1[ (ou on
invoque la parité de 𝑓).
Procédons maintenant au calcul de la dérivée : pour tout 𝑥 ∈] −∞,−1[∪]1, +∞[

𝑓′(𝑥) = (𝑖 ∘ ℎ ∘ 𝑔)′(𝑥) = 𝑖′(ℎ(𝑔(𝑥)))(ℎ ∘ 𝑔)′(𝑥) = 𝑖′(ℎ(𝑔(𝑥)))ℎ′(𝑔(𝑥))𝑔′(𝑥)

= 1

1 + √𝑥2 − 1
× 1

2√𝑥2 − 1
× (2𝑥)

= 𝑥
√𝑥2 − 1 + 𝑥2 − 1

Exercice 3.1

Montrer que la dérivée d’une fonction dérivable paire (resp. impaire) est impaire (resp. paire).

Attention!� Il faut TOUJOURS justifier la dérivabilité d’une fonction AVANT de calculer sa dérivée.
Il ne faut d’ailleurs surtout pas se fier à l’expression de la dérivée pour en déduire a posteriori l’ensemble sur lequel la
fonction est dérivable.
Par exemple, ln est dérivable de dérivée 𝑥 ↦ 1

𝑥 . La fonction 𝑥 ↦ 1
𝑥 est définie surℝ∗ mais pourtant ln n’est pas dérivable

sur ℝ∗ (elle n’y est même pas définie).

Théorème 3.1 Dérivabilité de la bijection réciproque

Soit 𝑓∶ I → J. On suppose que

• 𝑓 est bijective ;

• 𝑓 est dérivable sur I ;

• 𝑓′ ne s’annule pas sur I.

Alors

• 𝑓−1 est dérivable sur J ;

• (𝑓−1)′ = 1
𝑓′ ∘ 𝑓−1 .

Remarque. On retrouve facilement l’expression de (𝑓−1)′ en dérivant l’identité 𝑓 ∘ 𝑓−1 = Id (on dérive le membre de
gauche comme une composée).
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Interprétation géométrique

La pente de la tangente au point (𝑎, 𝑓(𝑎)) de la courbe représentative de
𝑓 est l’inverse de la pente de la tangente au point (𝑓(𝑎), 𝑎) de la courbe
représentative de 𝑓−1.
Si la première pente est nulle, la seconde est infinie : autrement dit, 𝑓−1
n’est pas dérivable en 𝑓(𝑎).

3.3 Dérivation et monotonie

Proposition 3.4 Caractérisation de la constance et de la monotonie

Soit 𝑓 une fonction dérivable sur un intervalle I.

• 𝑓 est constante sur I si et seulement si 𝑓′ = 0 sur I.

• 𝑓 est croissante sur I si et seulement si 𝑓′ ≥ 0 sur I.

• 𝑓 est décroissante sur I si et seulement si 𝑓′ ≤ 0 sur I.

Attention!� Il est essentiel que I soit un intervalle. Considérons par exemple la fonction 𝑓∶ 𝑥 ↦ 1
𝑥 . 𝑓 est dérivable

ssur ℝ∗ de dérivée négative sur ℝ∗. Pourtant, 𝑓 n’est pas décroissante sur ℝ∗. En effet, −1 < 1 mais 𝑓(−1) < 𝑓(1). Le
problème est que ℝ∗, n’est pas un intervalle.
Néanmoins, 𝑓 est décroissante sur chacun des intervalles ℝ∗+ et ℝ∗

− pris séparément.

Proposition 3.5 Stricte monotonie

Soit 𝑓 une fonction dérivable sur un intervalle I.

• Si 𝑓′ > 0 sur I, alors 𝑓 est strictement croissante sur I.

• Si 𝑓′ < 0 sur I, alors 𝑓 est strictement décroissante sur I.

Attention!� Les réciproques sont fausses. La fonction 𝑥 ↦ 𝑥3 est strictement croissante sur ℝ mais sa dérivée n’y est
pas strictement positive puisqu’elle s’annule en 0.

La proposition suivante est plus précise que la précédente.

Proposition 3.6 Stricte monotonie

Soit 𝑓 une fonction dérivable sur un intervalle I.

• 𝑓 est strictement croissante sur I si et seulement si 𝑓′ ≥ 0 sur I et 𝑓′ n’est jamais nulle sur un intervalle non réduit
à un point.

• 𝑓 est strictement décroissante sur I si et seulement si 𝑓′ ≤ 0 sur I et 𝑓′ n’est jamais nulle sur un intervalle non
réduit à un point.
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3.4 Tableau de variations
Établir un tableau de variations consiste à placer dans un tableau le signe de la dérivée ainsi que les variations de la fonction

qui en découlent. On place également les limites éventuelles de la fonction dans ce tableau.

Méthode Déterminer le signe d’une dérivée

On essaiera toujours de FACTORISER l’expression de la dérivée afin de pouvoir déterminer aisément son signe. Il est
en effet beacoup plus simple de déterminer le signe d’un produit que d’une somme.

Remarque. On n’est pas toujours obligé de déterminer la dérivée afin de déterminer le sens de variation. Par exemple
𝑓∶ 𝑥 ↦ ln(1 + 𝑒𝑥) est clairement croissante en tant que composée de deux fonctions croissantes.

Exemple 3.3

Soit 𝑓∶ 𝑥 ↦ ln𝑥
𝑥 . 𝑓 est dérivable sur ℝ∗

+ comme quotient de fonctions dérivables sur cet intervalle. De plus, pour tout

𝑥 ∈ ℝ∗
+, 𝑓′(𝑥) = 1 − ln𝑥

𝑥2 . On en déduit le tableau de variations suivant.

𝑥

𝑓′(𝑥)

𝑓(𝑥)

0 𝑒 +∞

+ 0 −

−∞

1
𝑒
1
𝑒

00

Méthode Établir des majorations et des minorations

Un tableau de variations permet de majorer ou minorer facilement des fonctions ou d’en déterminer un maximum ou un
minimum.

Exemple 3.4

L’étude précédente de la fonction 𝑓∶ 𝑥 ↦ ln𝑥
𝑥 montre que cette fonction admet pour maximum 1

𝑒 sur ℝ∗
+ et que celui-ci

est atteint en 𝑒.

Méthode Établir des inégalités par étude de fonction

Pour établir une inégalité du type 𝑓(𝑥) ≤ 𝑔(𝑥), on peut étudier la fonction 𝑓 − 𝑔 ou 𝑔 − 𝑓.
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Exemple 3.5

Montrons que pour tout 𝑥 ∈ ℝ+, sin𝑥 ≤ 𝑥 et que pour tout 𝑥 ∈ ℝ−, sin𝑥 ≥ 𝑥.
Introduisons la fonction 𝑓∶ 𝑥 ↦ sin𝑥 − 𝑥. 𝑓 est dérivable sur ℝ et pour tout 𝑥 ∈ ℝ, 𝑓′(𝑥) = cos𝑥 − 1 ≤ 0. Ainsi 𝑓 est
décroissante sur ℝ.
Puisque 𝑓(0) = 0, 𝑓(𝑥) ≤ 0 i.e. sin𝑥 ≤ 𝑥 pour tout 𝑥 ∈ ℝ+ et 𝑓(𝑥) ≥ 0 i.e. sin𝑥 ≤ 𝑥 pour tout 𝑥 ∈ ℝ−.
Ceci se visualise mieux à l’aide du tableau de variations.

𝑥

𝑓′(𝑥)

𝑓(𝑥)

−∞ 0 +∞

− 0 −

+∞+∞

−∞−∞

0

Exercice 3.2

Montrer que pour tout 𝑥 ∈] − 1,+∞[, ln(1 + 𝑥) ≤ 𝑥.

Exemple 3.6

On peut être amené à dériver plus d’une fois. Montrons par exemple que 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2
2 pour tout 𝑥 ∈ ℝ− et que

𝑒𝑥 ≥ 1 + 𝑥 + 𝑥2
2 pour tout 𝑥 ∈ ℝ+.

Posons 𝑓∶ 𝑥 ↦ 𝑒𝑥−1−𝑥− 𝑥2
2 . 𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 𝑒𝑥−1−𝑥 pour tout 𝑥 ∈ ℝ. 𝑓′ est elle-même dérivable

sur ℝ et 𝑓″(𝑥) = 𝑒𝑥 − 1 pour tout 𝑥 ∈ ℝ.
On en déduit que 𝑓″ ≤ 0 sur ℝ− et que 𝑓″ ≥ 0 sur ℝ+. Ainsi 𝑓′ est décroissante sur ℝ− et croissante sur ℝ+.
Puisque 𝑓′(0) = 0, 𝑓′ est positive sur ℝ. Ainsi 𝑓 est croissante sur ℝ.
Puisque 𝑓(0) = 0, 𝑓 ≤ 0 sur ℝ− et 𝑓 ≥ 0 sur ℝ+ et on a bien les inégalités voulues.
La situation est résumée par le tableau de variations suivant.

𝑥

𝑓″(𝑥)

𝑓′(𝑥)

𝑓(𝑥)

−∞ 0 +∞

+ 0 −

+∞+∞

00

+∞+∞

−∞−∞

+∞+∞

0
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3.5 Dérivées successives

Définition 3.5 Dérivées successives

Soient 𝑓 une fonction et 𝑛 ∈ ℕ. Si 𝑓 est 𝑛 fois dérivable, on note 𝑓(𝑛) sa dérivée 𝑛ème.
En particulier, 𝑓(0) = 𝑓.

Remarque. Pour tout 𝑛 ∈ ℕ, (𝑓(𝑛))
′
= 𝑓(𝑛+1).

Exercice 3.3

Soient 𝑓 une fonction et 𝑛 ∈ ℕ.
Montrer que si 𝑓 est une fonction paire, alors 𝑓(𝑛) a la parité de 𝑛 et que si 𝑓 est une fonction impaire, 𝑓(𝑛) a une parité
opposée à celle de 𝑛.

Exercice 3.4

Soit 𝑛 ∈ ℕ. Déterminer les dérivées successives de 𝑥 ↦ 𝑥𝑛 et 𝑥 ↦ 1
𝑥𝑛 .

Définition 3.6 Fonctions de classe 𝒞𝑛

Soient 𝑓∶ I → ℝ et 𝑛 ∈ ℕ. On dit que 𝑓 est de classe 𝒞𝑛 si 𝑓 est 𝑛 fois dérivable sur I et si 𝑓(𝑛) est continue sur I.
On dit que 𝑓 est de classe 𝒞∞ si 𝑓 est indéfiniment dérivable sur I.
On note 𝒞𝑛(I, ℝ) ou 𝒞𝑛(I) (resp. 𝒞∞(I, ℝ) ou 𝒞∞(I)) l’ensemble des fonctions de classe 𝒞𝑛 (resp. 𝒞∞) sur I.

Remarque. 𝒞0(I) est l’ensemble des fonctions continues sur I.

Remarque. Si 𝑓 est de classe 𝒞∞, les dérivées successives de 𝑓 sont toutes continues puisque dérivables.

Attention!� Une fonction dérivable n’est pas nécessairement de classe 𝒞1. En effet, la fonction 𝑓∶ 𝑥 ↦ 𝑥2 sin 1𝑥 pro-

longée par continuité en 0 par 𝑓(0) = 0 est dérivable en 0 mais sa dérivée 𝑥 ↦ 2𝑥 sin 1𝑥 − cos 1𝑥 n’admet pas de limite
en 0.

Remarque.

• Si 𝑛 ≤ 𝑝, alors 𝒞𝑝(I) ⊂ 𝒞𝑛(I).

• 𝒞∞(I) = ⋂
𝑛∈ℕ

𝒞𝑛(I).

• 𝒞0(I) ⊃ 𝒞1(I) ⊃ 𝒞2(I) ⊃ ⋯ ⊃ 𝒞𝑛(I) ⊃ ⋯ ⊃ 𝒞∞(I).
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Proposition 3.7 Opérations arithmétiques

Soit 𝑛 ∈ ℕ ∪ {∞}. Soient 𝑓 et 𝑔 deux fonctions de classe 𝒞𝑛 sur un intervalle I.

Combinaison linéaire Pour tout (λ, μ) ∈ ℝ2, λ𝑓 + μ𝑔 est de classe 𝒞𝑛 sur I et (λ𝑓 + μ𝑔)(𝑛) = λ𝑓(𝑛) + μ𝑔(𝑛) (pour
𝑛 ∈ ℕ).

Produit 𝑓𝑔 est de classe 𝒞𝑛 sur I.

Quotient Si 𝑔 ne s’annule pas sur I, alors
𝑓
𝑔 est de classe 𝒞𝑛 sur I.

Remarque. On verra ultérieurement la formule donnant la dérivée 𝑛ème d’un produit.

4 Étude de fonctions

Ensemble de définition
On recherche tout simplement la plus grande partie de ℝ sur laquelle 𝑓 est définie.

Restriction du domaine d’étude
On essaie de tirer parti de certaines propriétés de la fonction 𝑓 afin de restreindre le domaine d’étude.

Méthode Restriction du domaine d’étude

• Si 𝑓 est paire ou impaire, on n’étudie 𝑓 que sur ℝ+. Le comportement de 𝑓 sur ℝ− est obtenu par symétrie.

• Si 𝑓 est périodique de période T, on n’étudie 𝑓 que sur un intervalle de longueur T, habituellement [0, T] ou
[−T2 ,

T
2 ]. C’est souvent le cas si 𝑓 fait intervenir des fonctions trigonométriques. On obtient le comportement de

𝑓 sur ℝ par périodicité.

• Si 𝑓 est paire ou impaire et périodique de période T, on étudie 𝑓 sur l’intervalle [0, T2 ]. Par parité, on obtient le

comportement de 𝑓 sur [−T2 ,
T
2 ]. Comme cet intervalle est de longueur T, on en déduit le comportement de 𝑓 sur

ℝ par symétrie.
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Variations
De manière générale, on calcule la dérivée de 𝑓 et on utilise le signe de 𝑓′ pour en déduire le sens de variation de 𝑓. On

rappelle qu’on peut également déterminer directement le sens de variation en identifiant 𝑓 comme somme de fonctions de
même sens de variation ou comme composée de fonctions monotones.

Limites aux bornes de l’ensemble de définition
On détermine les limites de 𝑓 aux bornes de l’ensemble de définition. On verra plus loin comment lever les éventuelles

formes indéterminées.

Limite d’un polynôme à l’infini

La limite d’un polynôme à l’infini est égale à la limite de son terme non nul de plus haut degré.

Si 𝑎𝑛 ≠ 0, lim
𝑥→±∞

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎0 = lim
𝑥→±∞

𝑎𝑛𝑥𝑛

De plus, lim
𝑥→+∞

𝑥𝑛 = +∞ et lim
𝑥→−∞

𝑥𝑛 = {
+∞ si 𝑛 est pair
−∞ si 𝑛 est impair

.

Limite à l’infini d’une faction rationnelle

On appelle fraction rationnelle tout quotient de polynômes.
Soient P et Q deux polynômes. On a trois possibilités de limites à l’infini suivant les degrés de P et Q.

• Si degP < degQ, alors lim
𝑥→±∞

P(𝑥)
Q(𝑥)

= 0.

• Si degP > degQ, alors lim
𝑥→±∞

P(𝑥)
Q(𝑥)

= ±∞. Le signe de la limite dépend des signes des coefficients dominants de
P et Q.

• Si degP = degQ, alors lim
𝑥→±∞

P(𝑥)
Q(𝑥)

= 𝑎
𝑏 , où 𝑎 et 𝑏 sont les coefficients dominants respectifs de P et Q.

Attention!� La proposition précédente n’est valable que pour des limites A L’INFINI !

Méthode Limite à l’infini d’une fraction rationnelle

On peut également retenir la proposition précédente de la manière suivante : pour déterminer la limite à l’infini d’une
fraction rationnelle, il suffit de remplacer le numérateur et le dénominateur par leur terme de plus haut degré.

lim
𝑥→±∞

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎0
𝑏𝑝𝑥𝑝 + 𝑏𝑝−1𝑥𝑝−1 +⋯+ 𝑏0

= lim
𝑥→±∞

𝑎𝑛𝑥𝑛

𝑏𝑝𝑥𝑝

Exemple 4.1 Limite à l’infini de fractions rationnelles

• lim
𝑥→−∞

−2𝑥3 + 𝑥2 − 5𝑥 + 1
4𝑥4 − 5𝑥3 + 2𝑥2 − 𝑥 + 3 = lim

𝑥→−∞

−2𝑥3

4𝑥4 = lim
𝑥→−∞

− 1
2𝑥 = 0

• lim
𝑥→+∞

4𝑥4 − 2𝑥3 + 5𝑥2 − 2𝑥 + 3
−3𝑥3 + 𝑥2 + 6𝑥 − 2 = lim

𝑥→+∞

4𝑥4

−3𝑥3 = lim
𝑥→+∞

−4𝑥3 = −∞

• lim
𝑥→−∞

2𝑥3 − 5𝑥2 + 𝑥 + 1
3𝑥3 − 2𝑥2 − 5𝑥 + 7 = lim

𝑥→+∞

2𝑥3

3𝑥3 =
2
3
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Tableau de variations
On regroupe les informations sur le sens de variation dans un tableau de variations.

Attention!� On n’oublie pas de vérifier que les limites sont cohérentes avec les variations. Il est par exemple impossible
d’avoir une fonction 𝑓 croissante sur ]𝑎, 𝑏[ avec lim

𝑎+
𝑓 = +∞ ou lim

𝑏−
𝑓 = −∞.

Branches infinies
L’étude des branches infinies consiste à préciser l’allure de la courbe représentative 𝒞𝑓 de 𝑓 quand 𝑥 ou 𝑓(𝑥) tend vers

l’infini. On a plusieurs cas possibles.

• Limite infinie en un point 𝑎 ∈ ℝ
𝒞𝑓 admet la droite d’équation 𝑥 = 𝑎 comme asymptote verticale.

• Limite finie 𝑙 à l’infini
𝒞𝑓 admet la droite d’équation 𝑦 = 𝑙 comme asymptote horizontale.

• Limite infinie à l’infini

Dans ce cas, on calcule la limite 𝑙 de
𝑓(𝑥)
𝑥 quand 𝑥 tend vers l’infini. On a à nouveau plusieurs cas possibles.

1. Si 𝑙 = 0, alors 𝒞𝑓 admet une branche parabolique de direction (O𝑥).
2. Si 𝑙 = ±∞, alors 𝒞𝑓 admet une branche parabolique de direction (O𝑦).
3. Si 𝑙 ∈ ℝ∗, alors on calcule la limite 𝑐 de 𝑓(𝑥) − 𝑙𝑥 quand 𝑥 tend vers l’infini. On a deux cas possibles.

(a) Si 𝑐 = ±∞, alors 𝒞𝑓 admet une branche parabolique de direction la droite d’équation 𝑦 = 𝑙𝑥.
(b) Si 𝑐 ∈ ℝ, alors 𝒞𝑓 admet comme asymptote oblique la droite d’équation 𝑦 = 𝑙𝑥 + 𝑐.

Le programme stipule que vous n’avez à connaître que les asymptotes horizontales et verticales.

Les 6 types de branches infinies

𝑎

𝑙

Asymptote verticale d’équation 𝑥 =
𝑎

Asymptote horizontale d’équation
𝑦 = 𝑙

Asymptote oblique d’équation 𝑦 =
𝑎𝑥 + 𝑏

Branche parabolique
de direction (O𝑦)

Branche parabolique
de direction (O𝑥)

Branche parabolique
de direction 𝑦 = 𝑎𝑥
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Tracé de la courbe
On place les asymptotes et les tangentes horizontales puis on trace le graphe. On complète éventuellement le graphe par

les symétries repérées lors de la réduction

Exemple 4.2 Etude de la fonction 𝑓∶ 𝑥 ↦ sin 2𝑥 + 2 sin𝑥

L’ensemble de définition de 𝑓 est clairement ℝ.
𝑓 est 2π-périodique et impaire. On peut donc l’étudier sur [0, π].
𝑓 est clairement dérivable et pour tout 𝑥 ∈ ℝ,

𝑓′(𝑥) = 2 cos(2𝑥) + 2 cos𝑥 = 4 cos 3𝑥2 cos 𝑥2

On en déduit le tableau de variations suivant.

𝑥

𝑓′(𝑥)

𝑓(𝑥)

0
π
3 π

+ 0 − 0

00

3√3
2

3√3
2

00

On remarque qu’on a en particulier des tangentes horizontales aux points d’abscisses 0 et π.
On en déduit le tracé suivant.

−3π −2π −π π 2π 3π

Etude sur [0, π]
Prolongement par parité
Prolongement par périodicité

On peut par exemple déduire de l’étude que 𝑓 admet un maximum et un minimum sur ℝ valant respectivement 3
√3
2 et

−3
√3
2 .
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Exemple 4.3 Étude de 𝑓∶ 𝑥 ↦ 𝑥3

𝑥2 − 4

L’ensemble de définition de 𝑓 est clairement D𝑓 = ℝ ∖ {−2, 2}.
𝑓 est impaire (on vérifie en particulier que son domaine de définition est symétrique par rapport à 0). On peut se contenter
d’étudier 𝑓 sur ℝ+ ∖ {2}.
𝑓 est dérivable sur son ensemble de définition comme quotient de fonction dérivables dont le dénominateur ne s’annule
pas. De plus, pour tout 𝑥 ∈ D𝑓

𝑓′(𝑥) = 𝑥2(𝑥2 − 12)
(𝑥2 − 4)2

Comme on a une expression factorisée de 𝑓′, on obtient facilement le tableau de variations.

𝑥

𝑓′(𝑥)

𝑓(𝑥)

0 2 2√3 +∞

0 − − 0 +

00

−∞

+∞

3√33√3

+∞+∞

On voit par exemple que la courbe représentative de 𝑓 admet une asympote verticale d’équation 𝑥 = 2 (et donc également
une asymptote d’équation 𝑥 = −2 par parité).
On peut également constater que 𝑓 admet un minimum sur ]2, +∞[ et que celui-ci vaut 3√3.

−10 −8 −6 −4 −2 2 4 6 8 10

−10

−8

−6

−4

−2

2

4

6

8

10 Etude sur ℝ+
Prolongement par parité
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5 Fonctions à valeurs complexes
Dans ce paragraphe, on traite de fonctions de ℝ dans ℂ.

Définition 5.1 Parties réelle et imaginaire

Soit 𝑓 une fonction à valeurs complexes.

• On appelle partie réelle de 𝑓 la fonctions Re(𝑓)∶ 𝑥 ↦ Re(𝑓(𝑥)).

• On appelle partie imaginaire de 𝑓 la fonction Im(𝑓)∶ 𝑥 ↦ Im(𝑓(𝑥)).

On a donc 𝑓 = Re(𝑓) + 𝑖 Im(𝑓).

Définition 5.2 Dérivabilité des fonctions à valeurs complexes

Soit 𝑓 une fonction à valeurs complexes. On dit que 𝑓 est dérivable si Re(𝑓) et Im(𝑓) le sont. On pose alors 𝑓′ =
Re(𝑓)′ + 𝑖 Im(𝑓)′.

Remarque. Si 𝑓 est une fonction dérivable à valeurs complexes, Re(𝑓′) = Re(𝑓)′ et Im(𝑓′) = Im(𝑓)′.

Exemple 5.1

𝑥 ↦ 𝑒𝑖𝑥 est dérivable sur ℝ et sa dérivée est 𝑥 ↦ 𝑖𝑒𝑖𝑥.

Proposition 5.1 Opérations arithmétiques

Soient 𝑓 et 𝑔 deux fonctions à valeurs complexes dérivables sur A.

Combinaison linéaire Pour tout (λ, μ) ∈ ℂ2, λ𝑓 + μ𝑔 est dérivable sur A et (λ𝑓 + μ𝑔)′ = λ𝑓′ + μ𝑔′.

Produit 𝑓𝑔 est dérivable sur A et (𝑓𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′.

Quotient Si 𝑔 ne s’annule pas sur A, alors
𝑓
𝑔 est dérivable sur A et (

𝑓
𝑔 )

′
=
𝑓′𝑔 − 𝑓𝑔′

𝑔2 .

Remarque. Ce sont exactement les mêmes propriétés que pour les fonctions à valeurs réelles.

Proposition 5.2

Soit φ une fonction à valeurs complexes dérivable sur A. Alors exp ∘φ est dérivable sur A et (exp ∘φ)′ = (exp ∘φ)φ′.

Remarque. On a bien entendu des résultats plus généraux pour les composées de fonctions deℝ dansℝ par des fonctions
de ℝ dans ℂ mais ceux-ci seront traités plus loin.

Exemple 5.2

Pour α ∈ ℂ, 𝑥 ↦ 𝑒α𝑥 est dérivable et sa dérivée est 𝑥 ↦ α𝑒α𝑥.
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