
© Laurent Garcin MP Dumont d’Urville

Fonctions de deux variables

Dans ce qui suit, ⟨⋅, ⋅⟩ désigne le produit scalaire canonique de ℝ2 et ‖ ⋅ ‖ sa norme euclidienne associée.

1 Fonctions de deux variables réelles à valeurs réelles

1.1 Définition
Une fonction de deux variables réelles est une fonction d’une partie A de ℝ2 à valeurs dans ℝ.

Interprétation graphique

De même qu’une fonction d’une variable réelle peut-être représentée par une courbe deℝ2, une fonction de deux variables
réelles peut-être représentée par une surface deℝ3. Plus précisément, soit𝑓∶ A ⊂ ℝ2 → ℝ. Alors la surface représentative
de 𝑓 est 𝒮 = {(𝑥, 𝑦, 𝑓(𝑥, 𝑦)), (𝑥, 𝑦) ∈ A}.

Exemple 1.1

Voici deux exemples de surfaces représentatives.
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𝑓∶ (𝑥, 𝑦) ∈ ℝ2 ↦ 𝑥2 − 𝑦2 𝑓∶ (𝑥, 𝑦) ∈ ℝ2 ↦ 𝑥2 + 𝑦2

Exercice 1.1

Quel est l’ensemble de définition de (𝑥, 𝑦) ↦ ln(𝑥2 − 𝑦2)? Le représenter graphiquement.

1.2 Notion d’ouvert
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Définition 1.1 Boule

Soient 𝑎 ∈ ℝ2 et 𝑟 ∈ ℝ∗
+.

• On appelle boule ouverte de centre 𝑎 et de rayon 𝑟 l’ensemble

B(𝑎, 𝑟) = {𝑥 ∈ ℝ2, ‖𝑥 − 𝑎‖ < 𝑟}

• On appelle boule fermée de centre 𝑎 et de rayon 𝑟 l’ensemble

B(𝑎, 𝑟) = {𝑥 ∈ ℝ2, ‖𝑥 − 𝑎‖ ≤ 𝑟}

Définition 1.2 Ouvert

Soit U une partie de ℝ2. On dit que U est un ouvert si

∀𝑎 ∈ U, ∃ε > 0, B(𝑎, ε) ⊂ U

Exemple 1.2

• ∅ et ℝ2 sont des ouverts de ℝ2.

• Une boule ouverte est un ouvert de ℝ2.

• Soient 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ tels que 𝑎 < 𝑏 et 𝑐 < 𝑑. Alors ]𝑎, 𝑏[×]𝑐, 𝑑[ est un ouvert de ℝ2.

Remarque. Un ouvert de ℝ2 est une partie de ℝ2 qui ne contient pas sa «frontière».

A partir de maintenant, U et V désignent des ouverts de ℝ2.

1.3 Continuité

Définition 1.3 Continuité

Soient 𝑓∶ U → ℝ et 𝑎 ∈ U. On dit que 𝑓 est continue en 𝑎 si

∀ε > 0, ∃α > 0, ∀𝑥 ∈ B(𝑎, α), |𝑓(𝑥) − 𝑓(𝑎)| < ε

On dit que 𝑓 est continue sur U si 𝑓 est continue en tout point de U.

Exemple 1.3

Les projections canoniques { ℝ2 ⟶ ℝ
(𝑥, 𝑦) ⟼ 𝑥 et { ℝ2 ⟶ ℝ

(𝑥, 𝑦) ⟼ 𝑦 sont continues sur ℝ2.

Proposition 1.1 Opérations algébriques sur la continuité

Mêmes résultats que pour les fonctions d’une variable réelle.
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Exemple 1.4

Les projections canoniques étant continues surℝ2, les fonctions polynomiales de deux variables sont également continues
sur ℝ2 par opérations algébriques.

Proposition 1.2

L’ensemble des applications continues sur U à valeurs dans ℝ est un ℝ-espace vectoriel et un anneau.

Proposition 1.3 Composition et continuité

Soient A une partie de ℝ et 𝑓∶ A → ℝ. Soient D une partie de ℝ et φ∶ D → ℝ. On suppose 𝑓(A) ⊂ D.
Si 𝑓 est continue en 𝑎 ∈ A et φ est continue en 𝑓(𝑎), alors φ ∘ 𝑓 est continue en 𝑎.
Si 𝑓 est continue sur A et si φ est continue sur D, alors φ ∘ 𝑓 est continue sur A.

Exemple 1.5

La fonction (𝑥, 𝑦) ↦ sin(𝑥3 − 𝑥𝑦) est continue sur ℝ2.

2 Dérivées partielles et fonctions de classe 𝒞1

2.1 Dérivées partielles

Définition 2.1 Dérivées partielles

Soit 𝑓∶ U ↦ ℝ et (𝑥0, 𝑦0) ∈ U.

• Si 𝑥 ↦ 𝑓(𝑥, 𝑦0) est dérivable en 𝑥0, on appelle première dérivée partielle de 𝑓 en (𝑥0, 𝑦0) la dérivée de cette

fonction en 𝑥0 que l’on note
∂𝑓
∂𝑥(𝑥0, 𝑦0).

• Si 𝑦 ↦ 𝑓(𝑥0, 𝑦) est dérivable en 𝑦0, on appelle seconde dérivée partielle de 𝑓 en (𝑥0, 𝑦0) la dérivée de cette fonction

en 𝑦0 que l’on note
∂𝑓
∂𝑦 (𝑥0, 𝑦0).

Méthode Calculer des dérivées partielles

En pratique, pour déterminer les dérivées partielles, il suffit de dériver par rapport à une variable en laissant l’autre fixe.

Exemple 2.1

Soient 𝑓∶ (𝑥, 𝑦) ↦ 𝑥2𝑦 + 𝑦. Alors 𝑓 admet des dérivées partielles en tout point de ℝ2 et
∂𝑓
∂𝑥(𝑥, 𝑦) = 2𝑥𝑦 et

∂𝑓
∂𝑦 (𝑥, 𝑦) =

𝑥2 + 1.

Attention!� Contrairement aux fonctions d’une variable réelle, l’existence de dérivées partielles ne garantit pas la conti-
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nuité. Soit 𝑓 définie par 𝑓(𝑥, 𝑦) = 𝑥𝑦
𝑥2 + 𝑦2 et 𝑓(0, 0) = 0 admet des dérivées partielles nulles en (0, 0) mais n’est pas

continue en (0, 0).

2.2 Fonctions de classe 𝒞1

Définition 2.2 Fonctions de classe 𝒞1

Soit 𝑓∶ U → ℝ. On dit que 𝑓 est de classe 𝒞1 surU si 𝑓 admet des dérivées partielles en tout point deU et si ses dérivées
partielles sont continues sur U.

Exemple 2.2

Les projections canoniques et les fonctions polynomiales sont de classe 𝒞1 sur ℝ2.

Remarque. On peut à nouveau étendre cette notion aux fonctions de ℝ2 dans ℝ2. Puisque les composantes des dérivées
partielles d’une telle fonction sont les dérivées partielles des composantes, on prouve qu’une telle fonction est de classe
𝒞1 si et seulement si ses composantes le sont.

Théorème 2.1 Développement limité à l’ordre 1

Soient 𝑓∶ U → ℝ une application de classe 𝒞1 et (𝑥0, 𝑦0) ∈ U. Alors 𝑓 admet le développement limité à l’ordre 1
suivant :

𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) =
(ℎ,𝑘)→(0,0)

𝑓(𝑥0, 𝑦0) +
∂𝑓
∂𝑥(𝑥0, 𝑦0)ℎ +

∂𝑓
∂𝑦 (𝑥0, 𝑦0)𝑘 +

𝑜(‖(ℎ, 𝑘)‖)

Remarque. De manière géométrique, ceci signifie que le plan d’équation

𝑧 =
∂𝑓
∂𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) +

∂𝑓
∂𝑦 (𝑥0, 𝑦0)(𝑦 − 𝑦0)

est tangent au graphe de 𝑓 en (𝑥0, 𝑦0).

Corollaire 2.1

Une fonction de classe 𝒞1 sur U est continue sur U.

2.3 Gradient

Définition 2.3 Gradient

Soit 𝑓∶ U → ℝ une application de classe 𝒞1. On appelle gradient de 𝑓 en (𝑥0, 𝑦0) le vecteur

∇∇∇𝑓(𝑥0, 𝑦0) = (
∂𝑓
∂𝑥(𝑥0, 𝑦0),

∂𝑓
∂𝑦 (𝑥0, 𝑦0))
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Proposition 2.1 Développement limité à l’ordre 1

Soient 𝑓∶ U → ℝ une application de classe 𝒞1 et (𝑥0, 𝑦0) ∈ U. Alors

𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) =
(ℎ,𝑘)→(0,0)

𝑓(𝑥0, 𝑦0) + ⟨∇∇∇𝑓(𝑥0, 𝑦0), (ℎ, 𝑘)⟩ + 𝑜(‖(ℎ, 𝑘)‖)

3 Dérivées partielles et composées

3.1 Dérivée directionnelle

Définition 3.1 Dérivée selon un vecteur

Soient 𝑓∶ U → ℝ, 𝑎 ∈ U et 𝑣 ∈ ℝ2. Si 𝑡 ↦ 𝑓(𝑎 + 𝑡𝑣) est dérivable en 0, la dérivée de cette fonction en 0 s’appelle
dérivée de 𝑓 en 𝑎 selon le vecteur 𝑣 et est noté D𝑣𝑓(𝑎).

Remarque. En notant (𝑒1, 𝑒2) la base canonique de ℝ2,

∂𝑓
∂𝑥(𝑎) = D𝑒1𝑓(𝑎)

∂𝑓
∂𝑦 (𝑎) = D𝑒2𝑓(𝑎)

Proposition 3.1 Lien entre dérivée directionnelle, dérivées partielles et gradient

Soient 𝑓∶ U → ℝ de classe 𝒞1, 𝑎 ∈ U et 𝑣 = (ℎ, 𝑘) ∈ ℝ2. Alors

D𝑣𝑓(𝑎) = ⟨∇∇∇𝑓(𝑎), 𝑣⟩ =
∂𝑓
∂𝑥(𝑎)ℎ +

∂𝑓
∂𝑦 (𝑎)𝑘

Interprétation géométrique du gradient

En considérant 𝑢 un vecteur unitaire de ℝ2 et en remarquant que D𝑣(𝑎) = ⟨∇∇∇𝑓(𝑎), 𝑣⟩, on voit que le gradient de 𝑓 en 𝑎
donne la direction de la plus forte pente sur la surface représentant 𝑓 au point 𝑎 et que sa norme est la valeur de cette
pente.

Proposition 3.2 Règle de la chaîne

Soient 𝑓∶ U → ℝ, 𝑥∶ I → ℝ et 𝑦∶ I → ℝ de classe 𝒞1 telles que (𝑥, 𝑦)(I) ⊂ U. Alors 𝑡 ↦ 𝑓(𝑥(𝑡), 𝑦(𝑡)) est de classe 𝒞1
sur I et :

∀𝑡 ∈ I, d
d𝑡 (𝑓(𝑥(𝑡), 𝑦(𝑡))) =

∂𝑓
∂𝑥(𝑥(𝑡), 𝑦(𝑡))𝑥

′(𝑡) +
∂𝑓
∂𝑦 (𝑥(𝑡), 𝑦(𝑡))𝑦

′(𝑡)

Remarque. Si on note γ = (𝑥, 𝑦), alors 𝑓 ∘ γ est de classe 𝒞1 sur I et

∀𝑡 ∈ I, (𝑓 ∘ γ)′(𝑡) = ⟨∇∇∇𝑓(γ(𝑡)), γ′(𝑡)⟩

Exemple 3.1

Soit 𝑓 de classe 𝒞1 sur ℝ2 et 𝑔 définie par 𝑔(𝑡) = 𝑓(cos 𝑡, sin 𝑡) pour 𝑡 ∈ ℝ. 𝑔 est de classe 𝒞1 sur ℝ et pour tout 𝑡 ∈ ℝ

𝑔′(𝑡) = − sin 𝑡
∂𝑓
∂𝑥(cos 𝑡, sin 𝑡) + cos 𝑡

∂𝑓
∂𝑦 (cos 𝑡, sin 𝑡)
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Exercice 3.1

Soit 𝑓∶ ℝ2 → ℝ de classe 𝒞1. On dit que 𝑓 est homogène de degré α ∈ ℝ si

∀(𝑥, 𝑦) ∈ ℝ2, ∀𝑡 > 0, 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡α𝑓(𝑥, 𝑦)

Montrer que 𝑓 est homogène de degré α si et seulement si

∀(𝑥, 𝑦) ∈ ℝ2, 𝑥
∂𝑓
∂𝑥(𝑥, 𝑦) + 𝑦

∂𝑓
∂𝑦 (𝑥, 𝑦) = α𝑓(𝑥, 𝑦)

Lignes de niveau

Soit 𝑘 ∈ ℝ. L’ensemble E𝑘 = {(𝑥, 𝑦) ∈ U, 𝑓(𝑥, 𝑦) = 𝑘} est une courbe du plan appelée courbe de niveau de 𝑓. On
suppose que E𝑘 admet un paramétrage régulier γ∶ 𝑡 ∈ I → E𝑘. On a donc 𝑓(γ(𝑡)) = 𝑘 pour 𝑡 ∈ I. En dérivant, on en
déduit que pour tout 𝑡 ∈ I

∀𝑡 ∈ I, (𝑓 ∘ γ)′(𝑡) = ⟨∇∇∇𝑓(γ(𝑡)), γ′(𝑡)⟩ = 0

Comme γ′(𝑡) ≠ (0, 0) est un vecteur directeur de la tangente à E𝑘 en γ(𝑡), le gradient de 𝑓 en tout point de E𝑘 est donc
orthogonal à E𝑘.

Proposition 3.3 Composition

Soient 𝑓∶ U → ℝ, φ∶ V → ℝ et ψ∶ V → ℝ des applications de classe 𝒞1 telles que (φ, ψ)(V) ⊂ U. Alors l’application
𝑔∶ (𝑢, 𝑣) ↦ 𝑓(φ(𝑢, 𝑣), ψ(𝑢, 𝑣)) est de classe 𝒞1 sur V et

∂𝑔
∂𝑢(𝑢, 𝑣) =

∂𝑓
∂𝑥(φ(𝑢, 𝑣), ψ(𝑢, 𝑣))

∂φ
∂𝑢 (𝑢, 𝑣) +

∂𝑓
∂𝑦 (φ(𝑢, 𝑣), ψ(𝑢, 𝑣))

∂ψ
∂𝑢 (𝑢, 𝑣)

∂𝑔
∂𝑣(𝑢, 𝑣) =

∂𝑓
∂𝑥(φ(𝑢, 𝑣), ψ(𝑢, 𝑣))

∂φ
∂𝑣 (𝑢, 𝑣) +

∂𝑓
∂𝑦 (φ(𝑢, 𝑣), ψ(𝑢, 𝑣))

∂ψ
∂𝑣 (𝑢, 𝑣)

Passage en coordonnées polaires

Soit𝑓 une fonction de deux variables notées 𝑥 et 𝑦. Passer en coordonnées polaires signifie faire le changement de variables
𝑥 = 𝑟 cos θ et 𝑦 = 𝑟 sin θ i.e. introduire une nouvelle fonction 𝑔 telle que 𝑔(𝑟, θ) = 𝑓(𝑟 cos θ, 𝑟 sin θ). Les formules de
composition donnent alors :

∂𝑔
∂𝑟 (𝑟, θ) = cos θ

∂𝑓
∂𝑥(𝑟 cos θ, 𝑟 sin θ) + sin θ

∂𝑓
∂𝑦 (𝑟 cos θ, 𝑟 sin θ)

∂𝑔
∂θ(𝑟, θ) = −𝑟 sin θ

∂𝑓
∂𝑥(𝑟 cos θ, 𝑟 sin θ) + 𝑟 cos θ

∂𝑓
∂𝑦 (𝑟 cos θ, 𝑟 sin θ)

En notant R(θ) = (
cos θ − sin θ
sin θ cos θ

) la matrice de la rotation d’angle θ, on a donc (
∂𝑔
∂𝑟 (𝑟, θ)
1
𝑟
∂𝑔
∂θ(𝑟, θ)

) = R(−θ)
⎛
⎜⎜
⎝

∂𝑓
∂𝑥(𝑥, 𝑦)
∂𝑓
∂𝑦 (𝑥, 𝑦)

⎞
⎟⎟
⎠

ou encore
⎛
⎜⎜
⎝

∂𝑓
∂𝑥(𝑥, 𝑦)
∂𝑓
∂𝑦 (𝑥, 𝑦)

⎞
⎟⎟
⎠

= R(θ) (
∂𝑔
∂𝑟 (𝑟, θ)
1
𝑟
∂𝑔
∂θ(𝑟, θ)

). Ceci prouve que∇∇∇𝑓(𝑥, 𝑦) admet pour coordonnées (
∂𝑔
∂𝑟 (𝑟, θ),

1
𝑟
∂𝑔
∂θ(𝑟, θ))

dans la base (𝑢θ, 𝑣θ) obtenue par rotation de la base canonique d’un angle θ, où [𝑟, θ] sont les coordonnées polaires du
point de coordonnées cartésiennes (𝑥, 𝑦).
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4 Extrema

Définition 4.1 Extremum glocal

Soient A ⊂ ℝ2, 𝑓∶ U → ℝ et 𝑎 ∈ A.

• On dit que 𝑓 admet un maximum global sur A en 𝑎 si ∀𝑥 ∈ A, 𝑓(𝑥) ≤ 𝑓(𝑎).

• On dit que 𝑓 admet un minimum global sur A en 𝑎 si ∀𝑥 ∈ A, 𝑓(𝑥) ≥ 𝑓(𝑎).

Définition 4.2 Extremum local

Soient A ⊂ ℝ2, 𝑓∶ U → ℝ et 𝑎 ∈ A.

• On dit que 𝑓 admet un maximum local en 𝑎 s’il existe α > 0 tel que ∀𝑥 ∈ B(𝑎, α) ∩ A, 𝑓(𝑥) ≤ 𝑓(𝑎).

• On dit que 𝑓 admet un minimum local en 𝑎 s’il existe α > 0 tel que ∀𝑥 ∈ B(𝑎, α) ∩ A, 𝑓(𝑥) ≥ 𝑓(𝑎).

Définition 4.3 Point critique

Soit 𝑓∶ U → ℝ une application de classe 𝒞1. On dit que 𝑎 ∈ U est un point critique de 𝑓 si les dérivées partielles de 𝑓
sont nulles en 𝑎.

Proposition 4.1

Soit 𝑓∶ U → ℝ une application de classe 𝒞1. Si 𝑓 admet un extremum local en 𝑎 ∈ U, alors 𝑎 est un point critique de 𝑓.

Attention!� Il est essentiel que U soit un ouvert de ℝ2.

Remarque. Dans ce cas, toutes les dérivées directionnelles sont également nulles en 𝑎.

Méthode Recherche d’extrema

Recherche des points critiques On résout le système
⎧

⎨
⎩

∂𝑓
∂𝑥(𝑥, 𝑦) = 0

∂𝑓
∂𝑦 (𝑥, 𝑦) = 0

.

Etude au voisinage des points critiques Si (𝑎, 𝑏) est un point critique, on pose

𝑔(𝑢, 𝑣) = 𝑓(𝑎 + 𝑢, 𝑏 + 𝑢) − 𝑓(𝑎, 𝑏)

et on étudie le signe de 𝑣 au voisinage de (0, 0).

• Si 𝑔 change de signe au voisinage de (0, 0), alors 𝑓 n’admet pas d’extremum local en (𝑎, 𝑏).
• Si 𝑔 est de signe constant au voisinage de (0, 0), alors 𝑓 admet un extremum local en (𝑎, 𝑏).

On peut passer en polaires en posant 𝑢 = 𝑟 cos θ et 𝑣 = 𝑟 sin θ pour simplifier la recherche du signe de 𝑔.
On peut également considérer des équivalents d’expression du type 𝑔(𝑡, 0), 𝑔(0, 𝑡), 𝑔(𝑡, 𝑡2), …au voisinage de 0 pour
mettre en évidence un changement de signe.
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Exemple 4.1

Considérons l’application 𝑓∶ (𝑥, 𝑦) ↦ 𝑥3 − 𝑦2 − 𝑥.

• Recherche des points critiques :

⎧

⎨
⎩

∂𝑓
∂𝑥(𝑥, 𝑦) = 0

∂𝑓
∂𝑦 (𝑥, 𝑦) = 0

⟺ {
3𝑥2 − 1 = 0

−2𝑦 = 0
⟺ {

𝑥 = ± 1
√3

𝑦 = 0

• Etude au voisinage de ( 1
√3

, 0) : on pose 𝑢 = 𝑥 − 1
√3

et 𝑣 = 𝑦. On a alors :

𝑓(𝑥, 𝑦) − 𝑓 ( 1
√3

, 0) = 𝑢3 + 𝑢2√3 − 𝑣2 = 𝑔(𝑢, 𝑣)

On a 𝑔(0, 𝑣) < 0 pour 𝑣 < 0 et 𝑔(𝑢, 0) ∼
𝑢→0

𝑢2√3. Ainsi 𝑔(𝑢, 0) > 0 pour 𝑢 proche de 0 non nul. Donc 𝑓 n’admet

pas d’extremum local au voisinage de ( 1
√3

, 0).

• Etude au voisinage de (− 1
√3

, 0) : on pose 𝑢 = 𝑥 + 1
√3

et 𝑣 = 𝑦. On a alors :

𝑓(𝑥, 𝑦) − 𝑓 (− 1
√3

, 0) = 𝑢3 − 𝑢2√3 − 𝑣2 = 𝑔(𝑢, 𝑣)

Or 𝑢3 − 𝑢2√3 ∼
𝑢→0

−𝑢2√3 ≤ 0 pour 𝑢 proche de 0 et −𝑣2 ≤ 0. Donc 𝑔(𝑢, 𝑣) ≤ 0 au voisinage de (0, 0). Ainsi 𝑓

admet un maximum local en (− 1
√3

, 0).

• Extrema globaux : 𝑓 n’admet pas d’extremum global puisque lim
𝑥→+∞

𝑓(𝑥, 0) = +∞ et lim
𝑦→+∞

𝑓(0, 𝑦) = −∞.
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