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FONCTIONS DE DEUX VARIABLES

Dans ce qui suit, (-, -) désigne le produit scalaire canonique de R? et | - || sa norme euclidienne associée.

1 Fonctions de deux variables réelles a valeurs réelles

1.1 Définition
Une fonction de deux variables réelles est une fonction d’une partie A de R? a valeurs dans R.

—— Interprétation graphique

De méme qu’une fonction d’une variable réelle peut-étre représentée par une courbe de R?, une fonction de deux variables
réelles peut-étre représentée par une surface de R3. Plus précisément, soit f : A C R? — R. Alors la surface représentative

de festS ={(x,, f(x,¥)),(x,y) € A}.

Exemple 1.1

Voici deux exemples de surfaces représentatives.

f:(xy) €eR2m- x2—y? fi(xy) ER* > x2+)?

Exercice 1.1

Quel est I’ensemble de définition de (x, y) — In(x? — ) ? Le représenter graphiquement.

1.2 Notion d’ouvert
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Définition 1.1 Boule

Soient a € R?et r € R¥.

* On appelle boule ouverte de centre a et de rayon r I’ensemble
B(a,r) ={x € R?, ||x—a| <r}

* On appelle boule fermée de centre a et de rayon r I’ensemble

B(a,r) = {xeR? |x—a| <r}

Définition 1.2 Ouvert

Soit U une partie de R2. On dit que U est un ouvert si

Va e U, J¢ >0, B(a,e) cU

Exemple 1.2

o @ et R2 sont des ouverts de R2.

 Une boule ouverte est un ouvert de R2.

+ Soient a,b,c,d € R tels que a < b et ¢ < d. Alors ]a, b[X]c, d[ est un ouvert de R?.

REMARQUE. Un ouvert de R? est une partie de R? qui ne contient pas sa «frontiére».
A partir de maintenant, U et V désignent des ouverts de R2.

1.3 Continuité

Définition 1.3 Continuité

Soient f: U - Reta € U. On dit que f est continue en a si

Ve > 0, da > 0, Vx € B(a,a), |f(x)— f(a)] <¢€

On dit que f est continue sur U si f est continue en tout point de U.

Exemple 1.3

sont continues sur R2.

Les pro_]ectlons canoniques et

%y — x (%y) —

Proposition 1.1 Opérations algébriques sur la continuité

Mémes résultats que pour les fonctions d’une variable réelle.
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Exemple 1.4

Les projections canoniques étant continues sur R?, les fonctions polynomiales de deux variables sont également continues
sur R? par opérations algébriques.

Proposition 1.2

L’ensemble des applications continues sur U a valeurs dans R est un R-espace vectoriel et un anneau.

Proposition 1.3 Composition et continuité

Soient A une partie de Ret f: A — R. Soient D une partiec de Ret ¢ : D — R. On suppose f(A) C D.
Si f est continue en a € A et ¢ est continue en f(a), alors ¢ o f est continue en a.
Si f est continue sur A et si ¢ est continue sur D, alors ¢ o f est continue sur A.

Exemple 1.5

La fonction (x, y) ~ sin(x3 — xy) est continue sur R

2 Dérivées partielles et fonctions de classe C!

2.1 Dérivées partielles

Définition 2.1 Dérivées partielles

Soit f: U Ret(xy,)) € U.

* Six — f(x,y,) est dérivable en Xx,, on appelle premiere dérivée partielle de f en (xq,y) la dérivée de cette

fonction en x;, que 1’on note %(xo, Yo)-

e Siy > f(xg,y)estdérivable en y,, on appelle seconde dérivée partielle de f en (x, ¥,) la dérivée de cette fonction

en Y, que ’on note a(xo,yo).

WY Ui Calculer des dérivées partielles

En pratique, pour déterminer les dérivées partielles, il suffit de dériver par rapport a une variable en laissant 1’autre fixe.

Exemple 2.1

of

0
Soient f: (x,y) = x2y + y. Alors f admet des dérivées partielles en tout point de R? et a(x, y) =2xyet %(x, y) =

x? +1.

AtTENTION! Contrairement aux fonctions d’une variable réelle, 1’existence de dérivées partielles ne garantit pas la conti-
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nuité. Soit f définie par f(x,y) = % et f(0,0) = 0 admet des dérivées partielles nulles en (0, 0) mais n’est pas

+y
continue en (0, 0).

2.2 Fonctions de classe C!

Définition 2.2 Fonctions de classe C!

Soit f: U — R. Ondit que f est de classe ! sur U si f admet des dérivées partielles en tout point de U et si ses dérivées
partielles sont continues sur U.

Exemple 2.2

Les projections canoniques et les fonctions polynomiales sont de classe C! sur R2.

REMARQUE. On peut & nouveau étendre cette notion aux fonctions de R? dans R2. Puisque les composantes des dérivées
partielles d’une telle fonction sont les dérivées partielles des composantes, on prouve qu’une telle fonction est de classe
C! si et seulement si ses composantes le sont.

Théoréme 2.1 Développement limité a I’ordre 1

Soient f: U — R une application de classe C! et (xg,y,) € U. Alors f admet le développement limité a 1’ordre 1
suivant :

fGro+ o +1) | = Fk0,30)+ 5-Ckon Yol + 5o ol + oI O

(h,k)—(0,0

REMARQUE. De maniere géométrique, ceci signifie que le plan d’équation

2= 3 (oo )k = 30) + 3 (01 300 = 30)

est tangent au graphe de f en (X, yp).

Corollaire 2.1

Une fonction de classe C! sur U est continue sur U.

2.3 Gradient

Définition 2.3 Gradient

Soit f : U — R une application de classe C'. On appelle gradient de f en (x,, y,) le vecteur

Vf(xo,¥0) = <g(xo,J’0)a %(%Jo))
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Proposition 2.1 Développement limité a I’ordre 1

Soient f: U — R une application de classe C! et (xg,y,) € U. Alors

fo+hyo+k) = f(xo,¥0) +(Vf(x0.0): (h, k) + o([|(h, )]

(h,K)=(0,0)

3 Dérivées partielles et composées

3.1 Dérivée directionnelle

Définition 3.1 Dérivée selon un vecteur

Soient f: U —» R,a € Uetv € R2. Sit ~ f(a+ tv) est dérivable en 0, la dérivée de cette fonction en 0 s’ appelle
dérivée de f en a selon le vecteur v et est noté D, f(a).

REMARQUE. En notant (ej, e,) la base canonique de R?,

Y@ =D, f(@ T (@ =Def@

Proposition 3.1 Lien entre dérivée directionnelle, dérivées partielles et gradient

Soient f: U — R de classe €', a € Uetv = (h, k) € R2. Alors
_ _of of
Dyf(a) =(Vf(a),v) = a(a)h + g(a)k

Interprétation géométrique du gradient

En considérant u un vecteur unitaire de R? et en remarquant que D,(a) = (V f(a), v), on voit que le gradient de f en a
donne la direction de la plus forte pente sur la surface représentant f au point a et que sa norme est la valeur de cette
pente.

Proposition 3.2 Regle de la chaine

Soient f: U— R,x: I - Rety: I - Rdeclasse C! telles que (x,y)(I) C U. Alors t = f(x(t), y(t)) est de classe C!

surlet:
of f

Ve € 1 S UGO.0) = ZEOHOXO + LEO./ON O

REMARQUE. Sion note y = (x,y), alors f o7y est de classe C! sur I et

Vtel (foy) () = (VFH®), Y (1)

Exemple 3.1

Soit f de classe ! sur R? et g définie par g(t) = f(cost,sint) pour t € R. g est de classe C! sur R et pour tout t € R

) | . of .
g'(t) = —sint 3x (cost,sint) + cost 7 (cost,sint)
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Exercice 3.1

Soit f: R? — R de classe C'. On dit que f est homogene de degré a € R si
V(x,y) € R?, Vt > 0, f(tx,ty) = t*f(x,y)

Montrer que f est homogene de degré a si et seulement si

V(x,y) € R?, xg—f:(x,y) S yg—]yc(x,y) =af(x,y)

— Lignes de niveau

Soit k € R. Lensemble E;, = {(x,y) € U, f(x,y) = k} est une courbe du plan appelée courbe de niveau de f. On
suppose que Ej admet un paramétrage régulier y: t € I — Ej. On a donc f(y(t)) = k pour ¢t € 1. En dérivant, on en
déduit que pour tout t € 1

Veel (fey)(0)=(Vf(®),y(®) =0

Comme Y'(t) # (0,0) est un vecteur directeur de la tangente a Ej. en y(t), le gradient de f en tout point de E; est donc
orthogonal a E.

Proposition 3.3 Composition

Soient f: U= R,¢: V- Retd: V- R des applications de classe C! telles que (¢, %)(V) C U. Alors I’application
g: (u,v) = f(o(u,v),P(u,v)) est de classe C* sur V et

2 0) = Z @0 b )52 w0 + F @m0 b))
2 1) = 300,00 b0 o) S0 0) + 3 (000, 400 0) S0

——— Passage en coordonnées polaires

Soit f une fonction de deux variables notées x et y. Passer en coordonnées polaires signifie faire le changement de variables
X = rcosB ety = rsin® i.e. introduire une nouvelle fonction g telle que g(r,0) = f(rcos6,rsinB). Les formules de
composition donnent alors :

og _ of . . A0f .
3 (r,0) =cos O Ix (rcos®,rsinB) + sin© 3y (rcos®,rsin0)
g—‘g(r, 0) = —rsin eg—J;(r cos 0, rsin0) + rcos e%(r cos 0, rsin0)
3 of
cos@ —sinb . ) a—g(i’, 0) 7= (%)
En notant R(0) = la matrice de la rotation d’angle 6, on a donc = R(-0) g
sin® cos l%(}” 0) a—(X,y)
r ’ y
6_f(x ») a—g(r 0) 3 13
ou encore 8 = R(6) aar ’ . Ceci prouve que V f(x, y) admet pour coordonnées (—g(r, 0), - —g(r, 9))
L) 1% .0 e
r

dans la base (ug, Ug) obtenue par rotation de la base canonique d’un angle 6, ot [r, 8] sont les coordonnées polaires du
point de coordonnées cartésiennes (x, y).
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4 Extrema

Définition 4.1 Extremum glocal

Soient ACR?, f: U— Reta € A.
¢ On dit que f admet un maximum global sur A en a si Vx € A, f(x) < f(a).

¢ On dit que f admet un minimum global sur A en a si Vx € A, f(x) > f(a).

Définition 4.2 Extremum local

Soient ACR?, f: U— Reta € A.
¢ On dit que f admet un maximum local en a s’il existe a > 0 tel que Vx € B(a, o) N A, f(x) < f(a).

¢ On dit que f admet un minimum local en a s’il existe & > 0 tel que Vx € B(a,a) N A, f(x) > f(a).

Définition 4.3 Point critique

Soit f : U — R une application de classe C'. On dit que a € U est un point critique de f si les dérivées partielles de f
sont nulles en a.

Proposition 4.1

Soit f : U — R une application de classe C'. Si f admet un extremum local en a € U, alors a est un point critique de f.

AtTENTION! Il est essentiel que U soit un ouvert de R2.

REMARQUE. Dans ce cas, toutes les dérivées directionnelles sont également nulles en a.

W51 01 Recherche d’extrema

3
=0
Recherche des points critiques On résout le systeéme af

@(X’J’) =0

Etude au voisinage des points critiques Si (a, b) est un point critique, on pose
g(u,v) = f(a+u,b+u)— f(a,b)
et on étudie le signe de v au voisinage de (0, 0).

* Si g change de signe au voisinage de (0, 0), alors f n’admet pas d’extremum local en (a, b).
* Si g est de signe constant au voisinage de (0, 0), alors f admet un extremum local en (a, b).
On peut passer en polaires en posant u = rcos 6 et v = r sin 6 pour simplifier la recherche du signe de g.

On peut également considérer des équivalents d’expression du type g(t, 0), g(0, t), g(t, t?), ...au voisinage de 0 pour
mettre en évidence un changement de signe.
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Exemple 4.1

Considérons I’application f : (x,y) = x> — y? — x.

» Recherche des points critiques :

3

%(x,y)zo 3x2—1=0 x =t
= \3

Y (x,y) =0 it

ayx’y_ y=0

1 1
* Etude au voisinage de (—, 0) :onposeu =x — —etv=y. Onaalors:
3 3

f(x,J’)—f<%,0> =13 +u?\3 —v? = g(u,v)

On a g(0,v) < 0 pour v < 0 et g(u,0) ~ u\[3. Ainsi g(u,0) > 0 pour u proche de 0 non nul. Donc f n’admet
u—0

1
pas d’extremum local au voisinage de (—, 0).

1 1
* Etude au voisinage de (——, 0) :onposeu =x+ —etv=y. Onaalors:

V3 V3

f(an’) - f(—%,()) =ud— uz\/g_ V2= g(ua U)

Or u® —u?\/3 ~ —u?\/3 < 0 pour u proche de 0 et —v? < 0. Donc g(u,v) < 0 au voisinage de (0, 0). Ainsi f

u—0

1
admet un maximum local en (——, O).
3

» Extrema globaux : f n’admet pas d’extremum global puisque lim f(x,0) = +ocoet lim f(0,y) = —c0.
X—+00 y-+oo
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