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FoNCTIONS USUELLES

1 Fonctions logarithme, exponentielle et puissances

1.1 Fonction logarithme et exponentielle

Définition 1.1 Logarithme

. . . PR 1 9
La fonction In est ’'unique primitive de x — = sur R* s’annulant en 0.

Proposition 1.1 Propriétés algébriques du logarithme

Le logarithme transforme les produits en sommes :
Y(x,y) € ([R{i)z, Inxy=Inx+Iny

et donc les quotients en différences :

V(x,y) € (Ri)z, In==Inx—1Iny

X
y
et les puissances en multiples :

V(x,n) € R} XZ, Inx" =nlnx

ATTENTION ! Le produit xy peut étre strictement positif sans que x et y le soient (ils peuvent étre aussi tous deux strictement
négatifs). Il ne faut donc surtout pas écrire Inxy = Inx + In y si on n’est pas siir que x et y sont strictement positifs. Si
XY est strictement positif, c’est que xy = |xy| et on peut écrire sans prendre de risque

Inxy =In|x| +In|y|

Proposition 1.2

1
La fonction In est dérivable sur R’ et pour tout x € R%, In(x) = <

Définition 1.2 Exponentielle

In une bijection strictement croissante de R’ sur R. On note exp sa bijection réciproque.

REMARQUE. Le fait que In et exp soient des bijections réciproques 1’une de 1’autre signifie que In(exp(x)) = x pour tout
x € R etexp(In(x)) = x pour tout x € R}.
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Proposition 1.3 Propriétés algébriques de I’exponentielle

L’exponentielle transforme les sommes en produits :
V(x,y) € R?, exp(x +y) = exp(x) exp(y)

et donc les différences en quotients :
exp(x)
exp(y)

V(x,y) € R?, exp(x —y) =

et les multiples en puissances :
V(x,n) € R x Z, exp(nx) = exp(x)"

Proposition 1.4

La fonction exp est dérivable sur R et pour tout x € R, exp’(x) = exp x.

— Variations de In et exp

b —00 +00 X 0 +00
exp’(x) + In’(x) +
exp(x) 0 . too In(x) oo - too
- J

— Graphes des fonctions In et exp

4l _+7 |~ Graphe de exp
e Graphe de In
21/ 7
4 =2 2 4
/// _2,,
/// _4”
N ’ J

1.2 Fonctions puissances

Définition 1.3 Puissances entiéres

e SiaeRetneN*, onposea” =gxax--Xa.
N—_———_—_—

n fois

1
. SiaeR*etneZ’i,onposea”=F.

* Si a € R*, on convient que a° = 1.
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REMARQUE. Ainsi, si a € R*, a" est défini pour tout n € Z.

Définition 1.4 Puissances quelconques

Sia € R% etb € R, on pose a® = exp(blna).

ATTENTION! Si a est négatif, on ne peut pas définir de puissances non entiéres de a.

REMARQUE. Il est important de remarquer que les deux définitions des puissances coincident.
Autrement dit, si a € R} etn € Z, a" = exp(nlna).

On peut alors étendre les propriétés des logarithmes et des exponentielles a des puissances non entieres.

Proposition 1.5

* V(x,a) € R} X R, In(x*) = aln(x)

s V(x,a) € R?, exp(x)* = exp(ax).

Le nombre e

On note e = exp(1) ou, de maniere équivalente, on note e I’'unique antécédent de 1 par In. Pour tout x € R, e* =
exp(xIne) = exp(x). C’est pourquoi dorénavant, on notera e* et non exp(x) 1’exponentielle d’un réel x.

Proposition 1.6 Propriétés algébriques

Lorsque les expressions suivantes ont un sens

xa+b — yayb xab — (xa)b — (xb)a
1 1\¢
a_ ya,a -a _ =([Z
(xy)® = x%y YT xa (x)

Exemple 1.1

2
Pour tout n € Z, (22") = 22"

Définition 1.5 Fonction puissance

On appelle fonction puissance toute fonction du type x — x* ot o € R.

Proposition 1.7 Ensemble de définition

e Sia € N* x> x% est définie sur R.
e Siae Z_, x — x%est définie sur R*.

* Sia € R\ Z x+— x%est définie sur R.
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REMARQUE. Sia > 0, on peut prolonger par continuité la fonction x +— x* par 0 en 0.
Si a = 0, on peut prolonger par continuité la fonction x — x* par 1 en 0.

Proposition 1.8 Parité

Soit n € Z. La fonction x — x" a la parité de n.

REMARQUE. Sia € R\ Z, la fonction x — x* n’est ni paire ni impaire puisque son domaine de définition n’est pas
symétrique par rapport a 0.

Proposition 1.9 Dérivabilité

e Sia e N\{0,1}, x = x* est dérivable sur R de dérivée x - ax*L.
e Sia € Z_, x — x* est dérivable sur R* de dérivée x — ax® 1.

e Sia € R\ Z, x — x* est dérivable sur R% de dérivée x > ax*~1,
REMARQUE. Sia > 1, on peut prolonger x — x% par 0 en 0 et ce prolongement est dérivable en 0 de dérivée nulle.

ATTENTION! Si I’exposant est une fonction, il ne faut pas dériver n’importe comment. En clair, la dérivée de x - x/ )
nest pas x > f(x)x/)-1,

WY Dériver des fonctions de la forme x — f(x)8®)

L’idée est de se ramener 2 la forme exponentielle f(x)8*) = exp (g(x)In f(x)). On dérive alors comme une composée.

Exercice 1.1

Déterminer le domaine de dérivabilité et la dérivée de x — x*.

— Variations et limites : cas des puissances entiéres

x —00 +00 X +oco 0 +0o0

=1 — + nx"1 + 0 +
+00 +00 +00
x T — x" o —— O _—
n entier pair strictement positif n entier impair strictement positif

X —0o0 +0o0 X +o0 0 +0o0

nx"1 + - nx"~1 - +
+0o0 | +oo +00
K - — X 0 —
0 0 —00 0

n entier pair strictement négatif

n entier impair strictement négatif
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REMARQUE. Vous m’épargnerez le cas n = 0...
REMARQUE.
* Si n est pair strictement positif, x — x" réalise une bijection de R, sur R,.
* Si n est impair strictement positif, x — x" est une bijection de R sur R.
* Si n est pair strictement négatif, x — x" réalise une bijection de R’} sur R}.
* Si n est impair strictement négatif, x — x" est une bijection de R* sur R*.
— Variations et limites : cas des puissances non entieres
X 0 +o0 X 0 +0o0
ox®! + ax®! -
+00 +oo
a — n —_—
x 0 x 0
a>0 a<o0
J

REMARQUE. Pour a # 0, la fonction x — x* réalise une bijection de R sur R%. Sa bijection réciproque est la fonction
1

X Xa.

— Graphes : cas des puissances entieres

Graphe de x — x" suivant les valeurs de n

——n > 0 pair
—— n > 0 impair
—n=1

n=20

n < 0 pair

n < 0 impair
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— Graphes : cas des puissances non entiéres

Graphe de x — x% suivant les valeurs de a

—— Racines n®™mes

Si n est un entier naturel impair, X — x" est une bijection de R sur R. Sa bijection réciproque est notée V_ et elle est
définie sur R.
Si n est un entier naturel pair non nul, x — x" induit une bijection de R, sur R, . Sa bijection réciproque est encore notée

V_ et elle est définie sur R, .
1

De plus, pour tout n € N* et tout x € R}, &/x = xn.

ArtEnTION! Soit n € N\ {0, 1}.
1

La notation x» n’a aucun sens pour x < 0.
La notation %/x n’a de sens pour x < 0 que si n est impair.

ATTENTION ! Les racines n®™ notées 4/ n’ont pas grand-chose 2 voir avec les racines n°™* d’un complexe.
Un nombre complexe — flit-il réel — admet n racines n°™** complexes (sauf s’il est nul, bien entendu) tandis qu’un nombre

réel admet au plus une racine n°™ dans le sens %/ .
1

Des notations du style 4/z ou z# avec z complexe non réel n’ont AUCUN SENS.

REMARQUE. Pour tout n € N\ {0, 1}, la fonction x W est dérivable sur son ensemble de définition privé de 0.
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1.3 Croissances comparées

Lemme 1.1

lim X _ g

x—=+o00 X

L’idée a retenir est, qu’en +o0, I’exponentielle I’emporte sur la puissance, qui elle-méme I’emporte sur le logarithme.

Proposition 1.10 Croissances comparées

Soit (a, b) € (R%)2.

In x)b
lim 0% =0 lim x%Inx®>=0
x—+00 X% x—0+
eax
lim —- =+o0 lim |x|P]e®™ =0
x—=>+o00 X X—>—00

Exercice 1.2

Déterminer lim x*.

x—0+t

2 Fonctions circulaires directes et réciproques

2.1 Fonctions circulaires directes

On appelle fonctions circulaires ou trigonométriques directes les fonctions sin, cos et tan. On se reportera au chapitre
Trigonométrie pour les définitions et les différentes formules.

12198 Fonctions trigonométriques

La fonction sin est définie sur R, 2m-périodique et impaire.
La fonction cos est définie sur R, 27-périodique et paire.

s
La fonction tan est définie sur R \ <§ + TCZ), m-périodique et impaire.

e N
Lemme 2.1

. sinx
lim — =
x—>0 X

Proposition 2.1 Dérivabilité
Les fonctions cos, sin et tan sont dérivables sur leur ensemble de définition et

sin’ = cos cos’ = —sin tan’ = 1 + tan® = —
cos?
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Exercice 2.1
Calculer les dérivées successives de sin et cos
— Variations et limites
X -7 —7t/2 0 /2 T
sin’(x) - ) + 0 _
0 1
Y
sin(x) \ / 0 / \
-1 0
X -7 —7/2 0 /2 s
cos’(x) 0 + 0 - 0
1
\ / \ Y
cos(x) / 0 0 \
-1 -1
X —7/2 0 /2
tan’(x) +
+o0
Y
tan(x) / 0 /
-0
N J
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— Graphes

Graphe de sin

— Etude sur [0, g]

i 15 L
Prolongement par symétrie d’axe x = 3
—— Prolongement par parité
—— Prolongement par 2n-périodicité

NERE

=27 3n -

Graphe de cos

— Etude sur [O, g]

s

Prolongement par symétrie de centre (5, 0)
—— Prolongement par parité
—— Prolongement par 2nt-périodicité

—27 -7

SlE

Graphe de tan

— Etude sur |0, E]
Prolongement par parité

—— Prolongement par m-périodicité

S
Sl

B Y . B L

http://1lgarcin.github.io


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

2.2 Fonctions circulaires réciproques

Définition 2.1

. . . o . . . T T . q
* La fonction sin induit une bijection strictement croissante de [—5, E] sur [—1; 1]. On appelle fonction arcsinus sa
bijection réciproque notée arcsin.

* La fonction cos induit une bijection strictement décroissante de [0, 7t] sur [—1, 1]. On appelle fonction arccosinus
sa bijection réciproque notée arccos.

T T
* La fonction tan induit une bijection strictement croissante de ]_5’ 5[ sur R. On appelle fonction arctangente sa

bijection réciproque notée arctan.

REMARQUE.

. . .. . T T . . .
* La fonction arcsin est donc une bijection de [—1,1] sur [_5’ 5] Pour x € [—1,1], arcsin x est I’'unique réel de
T T .
-, —] dont le sinus vaut x.
2°2
* La fonction arccos est donc une bijection de [—1, 1] sur [0, 7t]. Pour x € [—1, 1], arccos x est I’unique réel de [0, 7t]
dont le cosinus vaut x.
. e . T T . , T T
* La fonction arctan est donc une bijection de R sur ]—5, 5[ Pour x € R, arctan x est ’unique réel de 3 5[
dont la tangente vaut x.

Proposition 2.2

Soit (x,8) € R2.
* 6 =arcsin(x) < x =sin(6)eTb € [—g,g

* § =arccos(x) < x =cos(6)er6 € [0, 7]

* O =arctan(x) < x =tan(6)Er0 € ]—g g[

— Angles usuels

. RN N R
2 2 2 2 2 2
! 2 3 4 6 6 4 3 2
arccos X [ S—TE 3—7[ 2—7[ T T s s 0
6 4 3 2 3 4 6
3 3
x -3 | =1 —g 0 g 1| V3
arctan X I I I 0 T T T
3 4 6 6 4 3
N J
— Ensemble de définition et image
Les fonctions arcsin et arccos sont définies sur [—1, 1] et la fonction arctan est définie sur R.
L’image des fonctions arcsin, arccos et arctan sont respectivement [—g, g], [0, 7] et ]—g, g .
- J
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— Variations et limites

\

arctan(x) S

b -1 0 1
T
Y / 2
arcsin(x) 0
o
2
b -1 0 1
7L Y
\ oL
arccos(x) 3 \
0
x —00 0 )
T
2

Proposition 2.3 Parité

Les fonctions arcsin et arctan sont impaires. La fonction arccos n’est ni paire ni impaire.

REMARQUE. On a néanmoins pour X € [—1, 1], arccos(—x) = 1 — arccos X.
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— Graphes

NI}
N

—— Graphe de arcsin
Graphe de sin

S|

pams

/ [ — Graphe de arccos
Graphe de cos

/ [ — Graphe de arctan
Graphe de tan
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Proposition 2.4

Vx € [—1,1], sin(arcsin x) = x Vx € R,arcsin(sinx) = x < x € [—g g
Vx € [-1, 1], cos(arccos x) = x Vx € R,arccos(cosx) = x < x € [0,7]
Vx € R, tan(arctan x) = x Vx e R\ (g + TrZ),arctan(tanx) =Xx & Xx€ ]—g,g

ATTENTION! arcsin o sin # Id, arccos o cos # Id et arctan o tan # Id. En effet, arcsin, arccos et arctan sont des bijections
réciproques de restrictions de sin, cos et tan.

Exemple 2.1
. 5m 1 . o1 i 51T 57t T T
Onasm?—imalsarcsmz—g¢?car?¢[—§,§
'Onacos—z—lmaisarccosl—E;E—Ecar—zﬁ[OTC]
372 273 3 3 T
571t

5T T 51 T T
. Z~ — 1 mai 1=+ - == 2.
On a tan mais arctan * car & ]

Exercice 2.2

Construire les courbes représentatives des fonctions arcsin o sin, arccos o cos et arctan o tan.

Proposition 2.5

Vx € [—1,1], sin(arccos x) = cos(arcsinx) = V1 — x2

Exercice 2.3 % Une somme d’arcsinus

Prouver 1’égalité suivante :

arcsin i + arcsin E = arcsin &
13 5) " 65)

Exercice 2.4

Résoudre 1’équation arcsin(x) = arccos(2x).

Proposition 2.6 Dérivabilité

Les fonctions arcsin et arccos sont dérivables sur | — 1, 1] et la fonction arctan est dérivable sur R.

1

1 1
Vx €] —1,1], arcsin'(x) = —— Vx €] —1,1], arccos'(x) = ———— Vx € R, arctan’(x) = i

V1—x? V1= x2
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@ ‘ ATTENTION! Les fonctions arcsin et arccos ne sont pas dérivables en —1 et 1.

Proposition 2.7

s
Vx € [-1,1], arcsinx + arccos x = >

1 . s
Vx € R*, arctan x + arctan = mgne(x)i

3 Fonctions hyperboliques

Définition 3.1 Fonctions hyperboliques

On appelle sinus hyperbolique, cosinus hyperbolique et tangente hyperbolique les trois fonctions notées respective-
ment ch, sh et th telles que pour tout x € R :

eX —e™* eX +e X sh x
hx =——— hx=——"— thx = =—=
shx 3 chx 3 X T

REMARQUE. Les formules définissant sh x et ch x sont les analogues des relations d’Euler permettant de définir sin et
cos a partir de I’exponentielle complexe. La seule différence est qu’ici, les exponentielles sont réelles.

— Formulaire de trigonométrie hyperbolique

¢ Formule fondamentale :
ch’x —sh?x=1

¢ Formules d’addition :

ch(a+b)=chachb+shashb ch(a—b)=chachb—shashb

sh(a +b) =shachb +chashb sh(a — b) =shachb —chashb
tha+thb tha—thb

th(a+b) = T qamb th(a—b) = 5 7mp

* Formules de duplication

ch2a=ch’a+sh’a=2ch’a—1=2sh’a+1
sh2a =2shacha
2tha

th2za= ———
1+th“a

REMARQUE. Seule la premiere formule est explicitement au programme. On doit néanmoins étre capable de retrouver
les autres formules facilement.

Les formules de trigonométrie hyperbolique sont évidemment trés analogues aux formules de trigonométrie usuelle. Il
suffit en fait de se rappeler quand les signes — se transforment en signe + et réciproquement.

Proposition 3.1 Parité

Les fonctions sh et th sont impaires et la fonction ch est paire.
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Proposition 3.2 Dérivabilité

Les fonctions sh, ch et th sont dérivables sur R et

’ ’ ' 1
sh’ = ch ch’ = sh th'=1-th’= —
ch
Exercice 3.1
Calculer les dérivées successives de sh et ch.
— Variations et limites
pY —00 0 +o0
sh'(x) +
+00
Y /
sh(x) / 0
-0
x —© 0 +oo
ch’(x) - 0 +
+00 +00
1
X —00 0 +o0
th'(x) +
+1
Y /
th(x) / 0
-1
N\ J
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— Graphes

—— Graphe de sh

4 4
Graphe de ch
—— Graphe de th
2 4
—4 -2 2 4
_2 +
_4 +
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