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Fonctions usuelles

1 Fonctions logarithme, exponentielle et puissances

1.1 Fonction logarithme et exponentielle

Définition 1.1 Logarithme

La fonction ln est l’unique primitive de 𝑥 ↦ 1
𝑥 sur ℝ∗

+ s’annulant en 0.

Proposition 1.1 Propriétés algébriques du logarithme

Le logarithme transforme les produits en sommes :

∀(𝑥, 𝑦) ∈ (ℝ∗
+)

2 , ln𝑥𝑦 = ln𝑥 + ln 𝑦

et donc les quotients en différences :
∀(𝑥, 𝑦) ∈ (ℝ∗

+)
2 , ln 𝑥𝑦 = ln𝑥 − ln 𝑦

et les puissances en multiples :
∀(𝑥, 𝑛) ∈ ℝ∗

+ × ℤ, ln𝑥𝑛 = 𝑛 ln𝑥

Attention!� Le produit 𝑥𝑦 peut être strictement positif sans que𝑥 et 𝑦 le soient (ils peuvent être aussi tous deux strictement
négatifs). Il ne faut donc surtout pas écrire ln𝑥𝑦 = ln𝑥 + ln 𝑦 si on n’est pas sûr que 𝑥 et 𝑦 sont strictement positifs. Si
𝑥𝑦 est strictement positif, c’est que 𝑥𝑦 = |𝑥𝑦| et on peut écrire sans prendre de risque

ln𝑥𝑦 = ln |𝑥| + ln |𝑦|

Proposition 1.2

La fonction ln est dérivable sur ℝ∗
+ et pour tout 𝑥 ∈ ℝ∗

+, ln′(𝑥) = 1
𝑥 .

Définition 1.2 Exponentielle

ln une bijection strictement croissante de ℝ∗
+ sur ℝ. On note exp sa bijection réciproque.

Remarque. Le fait que ln et exp soient des bijections réciproques l’une de l’autre signifie que ln(exp(𝑥)) = 𝑥 pour tout
𝑥 ∈ ℝ et exp(ln(𝑥)) = 𝑥 pour tout 𝑥 ∈ ℝ∗

+.
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Proposition 1.3 Propriétés algébriques de l’exponentielle

L’exponentielle transforme les sommes en produits :

∀(𝑥, 𝑦) ∈ ℝ2, exp(𝑥 + 𝑦) = exp(𝑥) exp(𝑦)

et donc les différences en quotients :

∀(𝑥, 𝑦) ∈ ℝ2, exp(𝑥 − 𝑦) =
exp(𝑥)
exp(𝑦)

et les multiples en puissances :
∀(𝑥, 𝑛) ∈ ℝ × ℤ, exp(𝑛𝑥) = exp(𝑥)𝑛

Proposition 1.4

La fonction exp est dérivable sur ℝ et pour tout 𝑥 ∈ ℝ, exp′(𝑥) = exp𝑥.

Variations de ln et exp

𝑥

exp′(𝑥)

exp(𝑥)

−∞ +∞

+

00
+∞+∞

𝑥

ln′(𝑥)

ln(𝑥)

0 +∞

+

−∞
+∞+∞

Graphes des fonctions ln et exp

−4 −2 2 4

−4

−2

2

4 Graphe de exp
Graphe de ln

1.2 Fonctions puissances

Définition 1.3 Puissances entières

• Si 𝑎 ∈ ℝ et 𝑛 ∈ ℕ∗, on pose 𝑎𝑛 = 𝑎 × 𝑎 ×⋯× 𝑎⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 fois

.

• Si 𝑎 ∈ ℝ∗ et 𝑛 ∈ ℤ∗−, on pose 𝑎𝑛 = 1
𝑎−𝑛 .

• Si 𝑎 ∈ ℝ∗, on convient que 𝑎0 = 1.
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Remarque. Ainsi, si 𝑎 ∈ ℝ∗, 𝑎𝑛 est défini pour tout 𝑛 ∈ ℤ.

Définition 1.4 Puissances quelconques

Si 𝑎 ∈ ℝ∗
+ et 𝑏 ∈ ℝ, on pose 𝑎𝑏 = exp(𝑏 ln 𝑎).

Attention!� Si 𝑎 est négatif, on ne peut pas définir de puissances non entières de 𝑎.

Remarque. Il est important de remarquer que les deux définitions des puissances coïncident.
Autrement dit, si 𝑎 ∈ ℝ∗

+ et 𝑛 ∈ ℤ, 𝑎𝑛 = exp(𝑛 ln 𝑎).

On peut alors étendre les propriétés des logarithmes et des exponentielles à des puissances non entières.

Proposition 1.5

• ∀(𝑥, α) ∈ ℝ∗
+ × ℝ, ln(𝑥α) = α ln(𝑥)

• ∀(𝑥, α) ∈ ℝ2, exp(𝑥)α = exp(α𝑥).

Le nombre 𝑒

On note 𝑒 = exp(1) ou, de manière équivalente, on note 𝑒 l’unique antécédent de 1 par ln. Pour tout 𝑥 ∈ ℝ, 𝑒𝑥 =
exp(𝑥 ln 𝑒) = exp(𝑥). C’est pourquoi dorénavant, on notera 𝑒𝑥 et non exp(𝑥) l’exponentielle d’un réel 𝑥.

Proposition 1.6 Propriétés algébriques

Lorsque les expressions suivantes ont un sens

𝑥𝑎+𝑏 = 𝑥𝑎𝑥𝑏 𝑥𝑎𝑏 = (𝑥𝑎)𝑏 = (𝑥𝑏)
𝑎

(𝑥𝑦)𝑎 = 𝑥𝑎𝑦𝑎 𝑥−𝑎 = 1
𝑥𝑎 = (1𝑥)

𝑎

Exemple 1.1

Pour tout 𝑛 ∈ ℤ, (22𝑛)
2
= 22𝑛+1.

Définition 1.5 Fonction puissance

On appelle fonction puissance toute fonction du type 𝑥 ↦ 𝑥α où α ∈ ℝ.

Proposition 1.7 Ensemble de définition

• Si α ∈ ℕ∗, 𝑥 ↦ 𝑥α est définie sur ℝ.

• Si α ∈ ℤ−, 𝑥 ↦ 𝑥α est définie sur ℝ∗.

• Si α ∈ ℝ ∖ ℤ, 𝑥 ↦ 𝑥α est définie sur ℝ∗
+.
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Remarque. Si α > 0, on peut prolonger par continuité la fonction 𝑥 ↦ 𝑥α par 0 en 0.
Si α = 0, on peut prolonger par continuité la fonction 𝑥 ↦ 𝑥α par 1 en 0.

Proposition 1.8 Parité

Soit 𝑛 ∈ ℤ. La fonction 𝑥 ↦ 𝑥𝑛 a la parité de 𝑛.

Remarque. Si α ∈ ℝ ∖ ℤ, la fonction 𝑥 ↦ 𝑥α n’est ni paire ni impaire puisque son domaine de définition n’est pas
symétrique par rapport à 0.

Proposition 1.9 Dérivabilité

• Si α ∈ ℕ ∖ {0, 1}, 𝑥 ↦ 𝑥α est dérivable sur ℝ de dérivée 𝑥 ↦ α𝑥α−1.

• Si α ∈ ℤ−, 𝑥 ↦ 𝑥α est dérivable sur ℝ∗ de dérivée 𝑥 ↦ α𝑥α−1.

• Si α ∈ ℝ ∖ ℤ, 𝑥 ↦ 𝑥α est dérivable sur ℝ∗
+ de dérivée 𝑥 ↦ α𝑥α−1.

Remarque. Si α > 1, on peut prolonger 𝑥 ↦ 𝑥α par 0 en 0 et ce prolongement est dérivable en 0 de dérivée nulle.

Attention!� Si l’exposant est une fonction, il ne faut pas dériver n’importe comment. En clair, la dérivée de 𝑥 ↦ 𝑥𝑓(𝑥)

n’est pas 𝑥 ↦ 𝑓(𝑥)𝑥𝑓(𝑥)−1.

Méthode Dériver des fonctions de la forme 𝑥 ↦ 𝑓(𝑥)𝑔(𝑥)

L’idée est de se ramener à la forme exponentielle 𝑓(𝑥)𝑔(𝑥) = exp (𝑔(𝑥) ln𝑓(𝑥)). On dérive alors comme une composée.

Exercice 1.1

Déterminer le domaine de dérivabilité et la dérivée de 𝑥 ↦ 𝑥𝑥.

Variations et limites : cas des puissances entières

𝑥

𝑛𝑥𝑛−1

𝑥𝑛

−∞ 0 +∞

− 0 +

+∞+∞
00

+∞+∞

𝑥

𝑛𝑥𝑛−1

𝑥𝑛

+∞ 0 +∞

+ 0 +

−∞−∞
+∞+∞0

𝑛 entier pair strictement positif 𝑛 entier impair strictement positif

𝑥

𝑛𝑥𝑛−1

𝑥𝑛

−∞ 0 +∞

+ −

00
+∞ +∞

00

𝑥

𝑛𝑥𝑛−1

𝑥𝑛

+∞ 0 +∞

− +

00
−∞

+∞
00

𝑛 entier pair strictement négatif 𝑛 entier impair strictement négatif
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Remarque. Vous m’épargnerez le cas 𝑛 = 0...

Remarque.

• Si 𝑛 est pair strictement positif, 𝑥 ↦ 𝑥𝑛 réalise une bijection de ℝ+ sur ℝ+.

• Si 𝑛 est impair strictement positif, 𝑥 ↦ 𝑥𝑛 est une bijection de ℝ sur ℝ.

• Si 𝑛 est pair strictement négatif, 𝑥 ↦ 𝑥𝑛 réalise une bijection de ℝ∗
+ sur ℝ∗

+.

• Si 𝑛 est impair strictement négatif, 𝑥 ↦ 𝑥𝑛 est une bijection de ℝ∗ sur ℝ∗.

Variations et limites : cas des puissances non entières

𝑥

α𝑥α−1

𝑥α

0 +∞

+

0
+∞+∞

𝑥

α𝑥α−1

𝑥𝑛

0 +∞

−

+∞
00

α > 0 α < 0

Remarque. Pour α ≠ 0, la fonction 𝑥 ↦ 𝑥α réalise une bijection de ℝ∗
+ sur ℝ∗

+. Sa bijection réciproque est la fonction

𝑥 ↦ 𝑥
1
α .

Graphes : cas des puissances entières

1

1

Graphe de 𝑥 ↦ 𝑥𝑛 suivant les valeurs de 𝑛

𝑛 > 0 pair
𝑛 > 0 impair
𝑛 = 1
𝑛 = 0
𝑛 < 0 pair
𝑛 < 0 impair
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Graphes : cas des puissances non entières

1

1

α > 1

0 < α < 1

α = 1

α = 0

α < 0

Graphe de 𝑥 ↦ 𝑥α suivant les valeurs de α

Racines 𝑛èmes

Si 𝑛 est un entier naturel impair, 𝑥 ↦ 𝑥𝑛 est une bijection de ℝ sur ℝ. Sa bijection réciproque est notée 𝑛√ et elle est
définie sur ℝ.
Si 𝑛 est un entier naturel pair non nul, 𝑥 ↦ 𝑥𝑛 induit une bijection deℝ+ surℝ+. Sa bijection réciproque est encore notée
𝑛√ et elle est définie sur ℝ+.

De plus, pour tout 𝑛 ∈ ℕ∗ et tout 𝑥 ∈ ℝ∗
+, 𝑛√𝑥 = 𝑥

1
𝑛 .

Attention!� Soit 𝑛 ∈ ℕ ∖ {0, 1}.

La notation 𝑥
1
𝑛 n’a aucun sens pour 𝑥 ≤ 0.

La notation 𝑛√𝑥 n’a de sens pour 𝑥 ≤ 0 que si 𝑛 est impair.

Attention!� Les racines 𝑛èmes notées 𝑛√ n’ont pas grand-chose à voir avec les racines 𝑛èmes d’un complexe.
Un nombre complexe – fût-il réel – admet 𝑛 racines 𝑛èmes complexes (sauf s’il est nul, bien entendu) tandis qu’un nombre
réel admet au plus une racine 𝑛ème dans le sens 𝑛√ .

Des notations du style 𝑛√𝑧 ou 𝑧
1
𝑛 avec 𝑧 complexe non réel n’ont AUCUN SENS.

Remarque. Pour tout 𝑛 ∈ ℕ ∖ {0, 1}, la fonction 𝑥 ↦ 𝑛√𝑥 est dérivable sur son ensemble de définition privé de 0.
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1.3 Croissances comparées

Lemme 1.1

lim
𝑥→+∞

ln𝑥
𝑥 = 0

L’idée à retenir est, qu’en +∞, l’exponentielle l’emporte sur la puissance, qui elle-même l’emporte sur le logarithme.

Proposition 1.10 Croissances comparées

Soit (𝑎, 𝑏) ∈ (ℝ∗
+)2.

lim
𝑥→+∞

(ln𝑥)𝑏
𝑥𝑎 = 0 lim

𝑥→0+
𝑥𝑎| ln𝑥|𝑏 = 0

lim
𝑥→+∞

𝑒𝑎𝑥

𝑥𝑏
= +∞ lim

𝑥→−∞
|𝑥|𝑏|𝑒𝑎𝑥 = 0

Exercice 1.2

Déterminer lim
𝑥→0+

𝑥𝑥.

2 Fonctions circulaires directes et réciproques

2.1 Fonctions circulaires directes
On appelle fonctions circulaires ou trigonométriques directes les fonctions sin, cos et tan. On se reportera au chapitre

Trigonométrie pour les définitions et les différentes formules.

Rappel Fonctions trigonométriques

La fonction sin est définie sur ℝ, 2π-périodique et impaire.
La fonction cos est définie sur ℝ, 2π-périodique et paire.
La fonction tan est définie sur ℝ ∖ (π2 + πℤ), π-périodique et impaire.

Lemme 2.1

lim
𝑥→0

sin𝑥
𝑥 = 1

Proposition 2.1 Dérivabilité

Les fonctions cos, sin et tan sont dérivables sur leur ensemble de définition et

sin′ = cos cos′ = − sin tan′ = 1 + tan2 = 1
cos2
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Exercice 2.1

Calculer les dérivées successives de sin et cos

Variations et limites

𝑥

sin′(𝑥)

sin(𝑥)

−π −π/2 π/2 π

− 0 + 0 −

00

−1−1

11

00

0

0

𝑥

cos′(𝑥)

cos(𝑥)

−π 0 π

0 + 0 − 0

−1−1

11

−1−1

−π/2

0

π/2

0

𝑥

tan′(𝑥)

tan(𝑥)

−π/2 π/2

+

−∞

+∞

0

0
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Graphes

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−1

1

Graphe de sin

Etude sur [0, π2 ]
Prolongement par symétrie d’axe 𝑥 = π

2Prolongement par parité
Prolongement par 2π-périodicité

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−1

1

Graphe de cos

Etude sur [0, π2 ]
Prolongement par symétrie de centre (π2 , 0)Prolongement par parité
Prolongement par 2π-périodicité

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−1

1

Graphe de tan

Etude sur [0, π2 ]Prolongement par parité
Prolongement par π-périodicité
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2.2 Fonctions circulaires réciproques

Définition 2.1

• La fonction sin induit une bijection strictement croissante de [−π2 ,
π
2 ] sur [−1; 1]. On appelle fonction arcsinus sa

bijection réciproque notée arcsin.

• La fonction cos induit une bijection strictement décroissante de [0, π] sur [−1, 1]. On appelle fonction arccosinus
sa bijection réciproque notée arccos.

• La fonction tan induit une bijection strictement croissante de ]−π2 ,
π
2 [ sur ℝ. On appelle fonction arctangente sa

bijection réciproque notée arctan.

Remarque.

• La fonction arcsin est donc une bijection de [−1, 1] sur [−π2 ,
π
2 ]. Pour 𝑥 ∈ [−1, 1], arcsin𝑥 est l’unique réel de

[−π2 ,
π
2 ] dont le sinus vaut 𝑥.

• La fonction arccos est donc une bijection de [−1, 1] sur [0, π]. Pour 𝑥 ∈ [−1, 1], arccos𝑥 est l’unique réel de [0, π]
dont le cosinus vaut 𝑥.

• La fonction arctan est donc une bijection de ℝ sur ]−π2 ,
π
2 [. Pour 𝑥 ∈ ℝ, arctan𝑥 est l’unique réel de ]−π2 ,

π
2 [

dont la tangente vaut 𝑥.

Proposition 2.2

Soit (𝑥, θ) ∈ ℝ2.

• θ = arcsin(𝑥) ⟺ 𝑥 = sin(θ) et θ ∈ [−π2 ,
π
2 ]

• θ = arccos(𝑥) ⟺ 𝑥 = cos(θ) et θ ∈ [0, π]

• θ = arctan(𝑥) ⟺ 𝑥 = tan(θ) et θ ∈ ]−π2 ,
π
2 [

Angles usuels

𝑥 −1 −
√3
2 −

√2
2 −12 0 1

2
√2
2

√3
2 1

arcsin𝑥 −π2 −π3 −π4 −π6 0 π
6

π
4

π
3

π
2

arccos𝑥 π 5π
6

3π
4

2π
3

π
2

π
3

π
4

π
6 0

𝑥 −√3 −1 −
√3
3 0

√3
3 1 √3

arctan𝑥 −π3 −π4 −π6 0 π
6

π
4

π
3

Ensemble de définition et image

Les fonctions arcsin et arccos sont définies sur [−1, 1] et la fonction arctan est définie sur ℝ.
L’image des fonctions arcsin, arccos et arctan sont respectivement [−π2 ,

π
2 ], [0, π] et ]−π2 ,

π
2 [.
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Variations et limites

𝑥

arcsin(𝑥)

−1 1

−π2−
π
2

π
2
π
2

0

0

𝑥

arccos(𝑥)

−1 1

ππ

00

0

π
2

𝑥

arctan(𝑥)

−∞ ∞

−π2−
π
2

π
2
π
2

0

0

Proposition 2.3 Parité

Les fonctions arcsin et arctan sont impaires. La fonction arccos n’est ni paire ni impaire.

Remarque. On a néanmoins pour 𝑥 ∈ [−1, 1], arccos(−𝑥) = π − arccos𝑥.
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Graphes

− π
2

−1 1 π
2

− π
2

−1

1

π
2

Graphe de arcsin
Graphe de sin

−1 1 π
2

π

−1

1

π
2

π
Graphe de arccos
Graphe de cos

− π
2

π
2

− π
2

π
2

Graphe de arctan
Graphe de tan
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Proposition 2.4

∀𝑥 ∈ [−1, 1], sin(arcsin𝑥) = 𝑥 ∀𝑥 ∈ ℝ, arcsin(sin𝑥) = 𝑥 ⟺ 𝑥 ∈ [−π2 ,
π
2 ]

∀𝑥 ∈ [−1, 1], cos(arccos𝑥) = 𝑥 ∀𝑥 ∈ ℝ, arccos(cos𝑥) = 𝑥 ⟺ 𝑥 ∈ [0, π]

∀𝑥 ∈ ℝ, tan(arctan𝑥) = 𝑥 ∀𝑥 ∈ ℝ ∖ (π2 + πℤ) , arctan(tan𝑥) = 𝑥 ⟺ 𝑥 ∈ ]−π2 ,
π
2 [

Attention!� arcsin ∘ sin ≠ Id, arccos ∘ cos ≠ Id et arctan ∘ tan ≠ Id. En effet, arcsin, arccos et arctan sont des bijections
réciproques de restrictions de sin, cos et tan.

Exemple 2.1

• On a sin 5π6 = 1
2 mais arcsin 12 =

π
6 ≠ 5π

6 car 5π6 ∉ [−π2 ,
π
2 ].

• On a cos−π3 = 1
2 mais arccos 12 =

π
3 ≠ −π3 car −π3 ∉ [0, π].

• On a tan 5π4 = 1 mais arctan 1 = π
4 ≠ 5π

4 car 5π4 ∉ ]−π2 ,
π
2 [.

Exercice 2.2

Construire les courbes représentatives des fonctions arcsin ∘ sin, arccos ∘ cos et arctan ∘ tan.

Proposition 2.5

∀𝑥 ∈ [−1, 1], sin(arccos𝑥) = cos(arcsin𝑥) = √1 − 𝑥2

Exercice 2.3 ★ Une somme d’arcsinus

Prouver l’égalité suivante :

arcsin ( 513) + arcsin (35) = arcsin (5665).

Exercice 2.4

Résoudre l’équation arcsin(𝑥) = arccos(2𝑥).

Proposition 2.6 Dérivabilité

Les fonctions arcsin et arccos sont dérivables sur ] − 1, 1[ et la fonction arctan est dérivable sur ℝ.

∀𝑥 ∈] − 1, 1[, arcsin′(𝑥) = 1
√1 − 𝑥2

∀𝑥 ∈] − 1, 1[, arccos′(𝑥) = − 1
√1 − 𝑥2

∀𝑥 ∈ ℝ, arctan′(𝑥) = 1
1 + 𝑥2
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Attention!� Les fonctions arcsin et arccos ne sont pas dérivables en −1 et 1.

Proposition 2.7

∀𝑥 ∈ [−1, 1], arcsin𝑥 + arccos𝑥 = π
2

∀𝑥 ∈ ℝ∗, arctan𝑥 + arctan 1𝑥 = signe(𝑥)π2

3 Fonctions hyperboliques

Définition 3.1 Fonctions hyperboliques

On appelle sinus hyperbolique, cosinus hyperbolique et tangente hyperbolique les trois fonctions notées respective-
ment ch, sh et th telles que pour tout 𝑥 ∈ ℝ :

sh𝑥 =𝑒
𝑥 − 𝑒−𝑥
2 ch𝑥 =𝑒

𝑥 + 𝑒−𝑥
2 th𝑥 = sh𝑥

ch𝑥

Remarque. Les formules définissant sh𝑥 et ch𝑥 sont les analogues des relations d’Euler permettant de définir sin et
cos à partir de l’exponentielle complexe. La seule différence est qu’ici, les exponentielles sont réelles.

Formulaire de trigonométrie hyperbolique

• Formule fondamentale :
ch2 𝑥 − sh2 𝑥 = 1

• Formules d’addition :

ch(𝑎 + 𝑏) = ch 𝑎 ch 𝑏 + sh 𝑎 sh 𝑏 ch(𝑎 − 𝑏) = ch 𝑎 ch 𝑏 − sh 𝑎 sh 𝑏
sh(𝑎 + 𝑏) = sh 𝑎 ch 𝑏 + ch 𝑎 sh 𝑏 sh(𝑎 − 𝑏) = sh 𝑎 ch 𝑏 − ch 𝑎 sh 𝑏

th(𝑎 + 𝑏) = th 𝑎 + th 𝑏
1 + th 𝑎 th 𝑏 th(𝑎 − 𝑏) = th 𝑎 − th 𝑏

1 − th 𝑎 th 𝑏

• Formules de duplication

ch 2𝑎 = ch2 𝑎 + sh2 𝑎 = 2 ch2 𝑎 − 1 = 2 sh2 𝑎 + 1
sh 2𝑎 = 2 sh 𝑎 ch 𝑎

th 2𝑎 = 2 th 𝑎
1 + th2 𝑎

Remarque. Seule la première formule est explicitement au programme. On doit néanmoins être capable de retrouver
les autres formules facilement.
Les formules de trigonométrie hyperbolique sont évidemment très analogues aux formules de trigonométrie usuelle. Il
suffit en fait de se rappeler quand les signes − se transforment en signe + et réciproquement.

Proposition 3.1 Parité

Les fonctions sh et th sont impaires et la fonction ch est paire.
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Proposition 3.2 Dérivabilité

Les fonctions sh, ch et th sont dérivables sur ℝ et

sh′ = ch ch′ = sh th′ = 1 − th2 = 1
ch2

Exercice 3.1

Calculer les dérivées successives de sh et ch.

Variations et limites

𝑥

sh′(𝑥)

sh(𝑥)

−∞ +∞

+

−∞−∞

+∞+∞

0

0

𝑥

ch′(𝑥)

ch(𝑥)

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

𝑥

th′(𝑥)

th(𝑥)

−∞ +∞

+

−1−1

+1+1

0

0
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Graphes

−4 −2 2 4

−4

−2

2

4 Graphe de sh
Graphe de ch
Graphe de th
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