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INTEGRATION

Dans tout ce chapitre a et b désigne des réels. Quand on note [a, b], il est sous-entendu que a < b.

1 Intégration des fonctions en escalier

1.1 Fonctions en escalier sur un segment

Définition 1.1 Fonction en escalier

aQ.

On dit qu’une application ¢ : [a,b] — R est en escalier s’il existe n € N et
des réels xg, X1, ... , X, tels que

i) a=xy<x,<--<Xp_1<x,=b;
(ii) @ est constante sur chaque intervalle |x;, x;,1[ pouri € [1,n — 1]).

Une telle famille (X;)o<;<, est appelée une subdivision de [a, b] subordonnée

L’ensemble des fonctions en escalier sur [a, b] se note £([a, b], R) ou plus sim-
plement &([a, b]). C’est un sous-espace vectoriel et un sous-anneau de R[%P],

¢ [ ] > <
(] p—a

< ([ ] ®
—C

Xo X1 Xy X3 X4 X5

1.2 Intégrale d’une fonction en escalier

Définition 1.2 Intégrale d’une fonction en escalier

n-1

i=0

Soit ¢ € £([a, b]) et u = (x;)<i<, une subdivision subordonnée a ¢.
Pour i € [[0,n — 1], on note ¢; la valeur de ¢ sur |x;, x;,1[-

La quantité Z ¢i(x;41 — x;) est indépendante de la subdivision u choisie.

On I’appelle I’intégrale de ¢ sur [a, b] et on la note f .

[a,b]

X0 X1 Xo X3 X4 X5

1.3 Propriétés de I’intégrale des fonctions en escalier

Proposition 1.1 Propriétés de I’intégrale

Linéarité L intégrale est une forme linéaire sur £([a, b]).

Positivité de ’intégrale L’intégrale d’une fonction en escalier positive est positive.

Croissance de I’intégrale Soit (¢,V) € £([a, b])? tel que ¢ < . Alors f
[a,b]

.

[a,b]

Relation de Chasles Soit ¢ € &([a,b]) et ¢ €]a, b[. Alors les restrictions de ¢ a [a,c] et [c, b] sont en escalier et

f <P=_/ CPl[a,c]+f P|[c,b]-
[a,b] [a,c] [e,b]
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2 Intégration des fonctions continues par morceaux

2.1 Fonctions continues par morceaux

Définition 2.1 Fonction continue par morceaux sur un segment

On dit qu'une application f : [a, b] — R est continue par morceaux s’il existe
n € N et des réels xg, xq, ..., X, tels que

i) a=xg<x<--<Xp_1<x,=b;

(1) fi]x;x;,,[ €St continue sur 1x;, X; 41 et prolongeable par continuité en X;
et x;,q pouri € [1,n—1].

Une telle famille (x;)o<;<, est appelée une subdivision de [a, b] subordonnée
af.

L’ensemble des fonctions continues par morceaux sur [a,b] se note
Cm([a,b],R) ou plus simplement C,,([a, b]). C’est un sous-espace vectoriel
et un sous-anneau de R[],

Définition 2.2 Fonction continue par morceaux sur un intervalle

Une fonction est dite continue par morceaux sur un intervalle si sa restriction a tout segment inclus dans cet intervalle est

continue par morceaux sur ce segment.

Exemple 2.1

La fonction t — |1/¢] est continue par morceaux sur R .

2.2 Approximation des fonctions continues par morceaux

Proposition 2.1
Soit f € C,,([a, b]). Pour tout réel € > 0, il existe (¢, ) € E([a, b])? tel que :

p<f<petp-—9p=<ce

2.3 Intégrale d’une fonction continue par morceaux

Définition 2.3 Intégrale d’une fonction continue par morceaux

Soit f € €,,([a, b]). On pose :

I'(f)={/[ ]CP,CPeg([a,b])ETCPSf} I+(f)={
a,b

¥, pe&(ab)erd > f

[a,b]

Alors I7(f) et I"(f) admettent respectivement une borne supérieure et une borne inférieure et ces bornes sont égales.

On appelle cette borne commune 1’intégrale de f sur [a, b] et on la note
[a,b]

REMARQUE. On peut changer la valeur de f en un nombre fini de points sans changer son intégrale.

http://lgarcin.github.io 2



http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

( 7

Notation 2.1

b
. Sia<b, f fode= | 1.

[a,b]

b
. SiaZb,f fdt=— | f.

[b,a]

?2 ATTENTION! Dans I’expression [ f(t)dt, le t s’appelle la variable d’intégration. Ce qui précéde montre qu’une inté-

grale ne dépend pas de la varlable d’intégration. Elle dépend seulement de ses bornes et de la fonction intégrée.

REMARQUE. Ily a une totale analogie avec les sommes qui ne dépendent pas de 1’indice de sommation mais seulement des
bornes et du terme général.

2.4 Propriétés de I’intégrale

Proposition 2.2 Propriétés de I’intégrale

Linéarité L intégrale est une forme linéaire sur C,,([a, b]).

Positivité de I’intégrale [’intégrale d’une fonction continue par morceaux positive est positive.

Croissance de I’intégrale Soit (f,g) € C,,([a, b])? telles que f < g sur [a, b]. Alors f= f g.
[a,b] [a,b]

L RE f[a,b] 17l

Relation de Chasles Soient f € C,,([a,b]) et ¢ €]a, b[. Alors les restrictions de f a [a, c] et [c, b] sont continues par

Inégalité triangulaire Soit f € C,,([a, b]). Alors |f| € €, ([a, b]) et

morceaux et f= / fila,el + / Site.p1-
[a,b] [a,c] [c,b]

Proposition 2.3

Soit (f,g) € €(I)* tel que f < g sur I. Soit (a, b) € I2.

b b
e Sia< b,/ f(t)de sf g(t)dt.

b b
e Sia>b, f®de > f g(t)dt.
a a

Exercice 2.1

n—-+oo

1
Soit f continue sur [0, 1]. Pour n € N, on pose I,, = / f(®)t" dt. Montrer que lim I, = 0.
0
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Proposition 2.4

Soient f continue sur un intervalle I. Soit (a, b, ¢) € I3. Alors

/bf(t)dt = /Cf(t)dt+ /bf(t)dt

REMARQUE. Cette version de la relation de Chasles est valable quelque soit I’ordre de a, b et c.

Proposition 2.5

Soit f une fonction continue et de signe constant sur [a, b] (a < b). Alors f = 0sietseulementsi f = 0sur[a, b].
[a,b]

ReEMARQUE. Il suffit donc de montrer qu’une fonction continue positive prend une valeur strictement positive sur [a, b] pour
prouver que son intégrale sur [a, b] est strictement positive.

@ ArteENnTION! La condition de continuité est essentielle. La fonction 8, nulle sur R* et valant 1 en 0 a une intégrale nulle
sur [—1, 1] sans pour autant étre nulle sur [—1, 1].

Exercice 2.2

Soit f continue sur [a, b] a valeurs réelles. Montrer que

[a,b].

f f ‘ = f |f| si et seulement si f est de signe constant sur
[a,b] [a,b]

3 Calcul de primitives et d’intégrales

3.1 Primitives

Définition 3.1 Primitive

Soit f une fonction continue sur un intervalle I. On appelle primitive de f sur I toute fonction de I dans R dérivable sur
I et dont la dérivée vaut f.

Proposition 3.1

Si F est une primitive d’une fonction f continue sur I, alors les autres primitives de f sur I sont les fonctions F + A avec
ALER.

REMARQUE. En particulier, deux primitives d’une méme fonction différent d’une constante.

@ ‘ ArTENTION ! 1l est essentiel de considérer des primitives sur un intervalle.
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Théoréme 3.1 Theoreme fondamental de I’analyse

Soit f une fonction continue sur un intervalle I.

(i) f admet une primitive sur I.

X
(ii) Soita € I. La fonction x — f f(®)dt est ’unique primitive de f nulle en a.
a

b
(iii) Si F est une primitive de f sur I, alors pour tout (a, b) € 12, f f(t)dt = F(b) — F(a).
a

La quantité F(b) — F(a) se note [F]2 ou encore [F(¢)]:=L.

X
REMARQUE. Toutes les primitives de f sur I sont donc du type x — f f(t)dt + C. Ceci justifie la notation vu plus tot dans
a

I’année / f(t)dt pour une primitive de f définie a une constante additive prés.

On remarque de plus qu'un calcul de primitives se ramene finalement a un calcul d’intégrales.

Exercice 3.1 Banal

Etablir la dérivabilité puis calculer la dérivée de la fonction ¢ définie par

ex
X — f \/ 1+ In*(t)dt.
e—X

Corollaire 3.1

b
Soit f € CI(I). Alors, pour tout (a, b) € 12, f f'®dt = f(b) — f(a).

3.2 Meéthodes de calcul

3.2.1 Intégration par parties

Proposition 3.2 Intégration par parties

Soit (u, v) € C1(I)2. Soit (a, b) € 12

b b
/ W (Ov()dt = [uv]? —/ u(t)v'(t)dt

Exemple 3.1

* Calcul d’une primitive de In.

 Calcul d’une primitive de arctan.

¢ Calcul d’une primitive de x — x"e* pour n =0, 1, 2.
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Exercice 3.2 %% Intégrales de Wallis

On pose pour tout 1 > 0,

/2
I, = f sin"(x)dx.

(0]

1. Calculer I, et I;.
2. En intégrant par parties, trouver une relation de récurrence entre I, et I, .
3. Donner une expression de I, , et I, en fonction de n.

4. Vérifier que (I,,),,50 est décroissante. En déduire que Z—I;In <L <1,
5. Démontrer que I, 1 ~I,,.

6. Etablirque Vn € N, (n+ DI, 41, = T

2
7. En déduire que

3.2.2 Changement de variable

Proposition 3.3 Changement de variable

Soient I un intervalle de R, ¢ une fonction de classe C! sur I et f une fonction continue sur ¢(I). Alors pour tout (a, b) € I?

¢(b) b
f Foydt = f Fo()e' (wdu
¢(a) a

REMARQUE. On dit qu’on effectue le changement de variable ¢t = @(u).

\Y (1 LG Y Changement de variable

B
Soit a calculer I’intégrale f f(t) dt via le changement de variable t = ¢@(u).
(¢4

* On cherche a et b tels que @(a) = aet @(b) = B.

* On vérifie que ¢ est bien de classe C! sur [a, b].

* «A la physicienne», d—; = ¢'(u) donc dt = ¢'(u) du.

d
* On remplace ¢ par @(u) et dt par ¢’'(u) du dans ’intégrale.
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Exemple 3.2

1
Soit a calculer f V1 — t2dt en effectuant le changement de variable t = sin u.
-1

¢ On asin (—g) =—let sin(g) =1.
« sin est bien de classe C! sur [—g, g]

e dt = cosu du.

On en déduit que

b
2

1 & =
2 2
‘/‘\ll—t2 dtzf Vl—sinzucosudu:f | cosu| cosu du
-1 — —

T
1 (2
cosudu== | (1+cos2u)du= T
2 ) = 2
2

NIERSIE

I
=

ArTENTION! Il n’y a pas a réfléchir a I’ordre des bornes ou a les replacer dans un soit disant «bon sens». Par exemple, si

1
1 — t2 dt. On obtient

I’on choisit d’effectuer le changement de variable ¢t = cos u pour le calcul de I’intégrale f
-1

1 0
/ V1-—1¢2 dt=f V1 —cos2u(—sinu) du
-1 s

puisque cos(m) = —1 et cos(0) = 1.

REMARQUE. Quand on effectue un changement de variable, on exprime 1’ancienne variable en fonction de la nouvelle variable
et on vérifie que cette fonction est G1. Néanmoins, en pratique, il arrive souvent que I’'on exprime la nouvelle variable en fonction

de I’ancienne variable.

Exemple 3.3

, on effectue le changement de variable u = \/E En toute rigueur, on devrait dire t = u?. 11 faut

4
Pour calculer f
0 t+1
alors vérifier que @ : u +— u? est de classe C! sur [0,2] (et non t — \/; de classe C! sur [0, 4], ce qui est faux). On en

4 2 2
f dt =f 2“d“=2f (1—L)du=4—2ln2
- \/;_,_1 A 1+u A 1+u

déduit que
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— Application au calcul de primitives usuelles

Soita > 0.
N 1 1 x
* Une primitive de x = ——— sur R est x — — arctan —.
X2+ a a
N 1 . X
* Une primitive de x » ——— sur | — a, af est x — arcsin =.
a2 —x2 a
s 1 X
* Une primitive de x » ———— sur | — a, a[ est x > arccos =.
a2z — x2 a

L 1 X
* Une primitive de x +— sur | —a,af est x — p argth .

az — x2

s 1 X
* Une primitive de x =» ———— sur R est x — argsh —.
az + x2 a

o x
* Une primitive de x +— sur ]a, +oo[ est x — argch =

1

Exercice 3.3

Calcul d’un primitive de x —

x2+x+1

3.2.3 Parité et périodicité

Proposition 3.4 Intégration d’une fonction paire ou impaire

Soit f une fonction continue sur un intervalle I symétrique par rapport a 0.

* Si f est paire, alors pour tout a € I,

0f(t) dt = af(t) dt et af(t)dt =) af(t)dt
—a 0 -a 0

f_if(t)dt:-/oaf(t)dt et f_:f(t)dt=0

* Si f est impaire,

Proposition 3.5

Soient f une fonction continue et T-périodique sur R. Alors pour tout a € R

fa " £ dt = /0 ) £ dt

REMARQUE. Autrement dit, I’intégrale de f sur tout intervalle de longueur une période est la méme.

3.2.4 Polynomes trigonométriques
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\YE10 Y Intégration des polyndmes trigonométriques

Pour intégrer un polyndme trigonométrique, il suffit de le linéariser. Se reporter au chapitre sur les complexes.

Exemple 3.4

Calcul de / sin® xdx.

3.2.5 Passage en complexe

\Y (1 LG Y Passage en complexe

On sait que la partie réelle (resp. imaginaire) de I’intégrale est I'intégrale de la partie réelle (resp.imaginaire). Il est parfois
plus facile de passer en complexe pour revenir en réel.

Exemple 3.5

2m
Calcul de / el sintdt.
0

3.2.6 Fractions rationnelles

\I(33 Uiy Intégration des fractions rationnelles

Pour intégrer une fraction rationnelle F, on la décompose en éléments simples.

PR 1
On est alors ramené a intégrer des termes de la forme ————

(x =)
e Sin> 1ousiA € R, on connait la primitive d’un tel terme.
eSin=1etAe C\R.
— Si F n’est pas a coeflicients réels, on pose A = a + ib et on utilise la quantité conjuguée :

1 x—a ib
x—A (x—a)2+b> (x—a)?+b?

Le premier terme donne une primitive en In et le deuxieéme terme une primitive en arctan.

a
et —. On regroupe ces
xX—A

— Si F est a coeflicients réels, la DES de F comporte deux termes conjugués

a
xX—A

deux termes et on obtient un terme du type oll x? 4+ px + q n’admet pas de racines réelles. L’idée

X
X2+ px+q
est alors de mettre le trindme x> + px + q sous forme canonique. On obtient alors une primitive en In et en
arctan.

Exemple 3.6

4
Calcul defmdx
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3.2.7 Fractions rationnelles trigonométriques

On appelle fraction rationnelle trigonométrique une fonction du type ¢t — R(cost, sint) o R est une fraction rationnelle a

X3 + X2Y —Y?

deux indéterminées (e.g. R(X,Y) = XY

\Y (5 WL Y Intégration des fractions rationnelles trigonométriques

trigonométrique.

On utilise la regle de Bioche pour se ramener a I’intégration d’une fraction rationnelle traditionnelle.
* Si R(cos t, sin t)dt est invariant par la transformation ¢ — —t, on effectue le changement de variable u = cos't.
¢ Si R(cos t, sin t)dt est invariant par la transformation ¢ — 7 — t, on effectue le changement de variable u = sint.

* Si R(cos t, sin t)dt est invariant par la transformation ¢ — 7 + t, on effectue le changement de variable u = tant.

t . .
* Sinon on effectue le changement de variable u = tan 5 et on utilise les formules de paramétrage rationnel du cercle

AttENTION! Il faut prendre en compte le «dt» pour le test de I’invariance par les différentes transformations.

Exemple 3.7

T sint dt—ln—3
A 4—cos2t 2

3.2.8 Fractions rationnelles hyperboliques

On appelle fraction rationnelle hyperbolique une fonction du type t = R(cht,sht) ol R est une fraction rationnelle a deux

X3+X2Y—Y2)

indéterminées (e.g. R(X,Y) = & —%T

\YE1 0 Y Intégration des fractions rationnelles hyperboliques

On pose u = e’ et on se raméne a I'intégration d’une fraction rationnelle classique.

4 Approximation d’intégrales

4.1 Méthode des rectangles

Définition 4.1 Somme de Riemann

Soit f € €,,([a,b]). On appelle somme de Riemann de f I’'une des deux sommes suivantes :

b—a
n

b—a

n-—1 n
Rn(f) = > fla) Ra(f) = — > flay)
k=0 k=1

b—a

olay=a+k pour tout k € [0, n] et n est un entier non nul.
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— Interprétation graphique des sommes de Riemann

Une somme de Riemann n’est que I’approximation de 1’aire correspondant a I’intégrale de f sur [a, b] par la somme des
aires des rectangles dans la figure suivante.

AN N
N

N

Somme de Riemann R,,(f) Somme de Riemann R},(f)

. b—a
Les aires des rectangles sont les quantités " Sflap).

(. J

Proposition 4.1 Convergence des sommes de Riemann

Soit f € €,,([a, b]). Alors les suites (R, (f)) et (R,,(f)) convergent vers f f.
[a,b]

Proposition 4.2

Soit f une fonction K-lipschitzienne sur [a, b]. Alors

K(b — a)?
2n

K(b — a)?

f - Rn(f) n

[a.b]

<

f=Ra()

<

[a,b]

REMARQUE. C’est notamment le cas lorsque f est de classe C! sur [a, b]. Ce qu’il faut retenir, c’est que I’erreur commise en

1
approchant I’intégrale par la somme de Riemann est un (E)

4.2 Méthode des trapezes

Définition 4.2

Soit f € €,,([a, b]). On pose :

n-1
Un(f) _ b;a Z f(ak) +2f(ak+l) avec Vk € [[O,Vl]], a = a+kb;a
k=0

ol n est un entier non nul.
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— Interprétation graphique de la méthode des trapézes

La méthode des trapézes consiste a approcher I’aire correspondant a I’intégrale de f sur [a, b] par la somme des aires des
trapeézes dans la figure suivante.

TN

b—a f(ay) +f(ak+1).

Les aires des trapezes sont les quantités >
Le dessin permet de constater que la méthode des trapezes semble plus efficace que la méthode des rectangles.
N

J

REMARQUE. On pourrait prouver que si f est de classe C? sur [a, b], 1’erreur commise en approchant I’intégrale par la méthode

d ¢ 1
es trapezes est un 9 (ﬁ)

5 Cas des fonctions a valeurs complexes

Définition 5.1 Fonction continue par morceaux a valeurs complexes

Une application f : [a,b] — C est dite continue par morceaux si ses parties réelle et imaginaire le sont.
On note €,,([a, b], C) ’ensemble des fonctions continues par morceaux a valeurs complexes.

Définition 5.2 Intégrale d’une fonction continue par morceaux a valeurs complexes

Soit f € €,,([a, b], C). On appelle intégrale de f sur [a, b] le nombre complexe :

f[a i f[a’b] Re(f) +1 f[ )
Re ( /[ i f)= /[ R Im( f[a’b]f> - f[a’b] Im(f)

Quasiment toutes les propriétés des intégrales de fonctions continues par morceaux a valeurs réelles restent valables pour
des intégrales de fonctions continues par morceaux a valeurs complexes quitte a modifier les valeurs absolues éventuelles par

des modules. Les seules propriétés qui ne sont pas conservées sont celles qui feraient intervenir des inégalités entre complexes,
a savoir :

En particulier,
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* la positivité de I’intégrale;;

* la croissance de I’intégrale;;

¢ le résultat assurant qu’une fonction continue et de signe constant est d’intégrale nulle si et seulement si elle est constam-

ment nulle.

Exercice 5.1

Lemme de Riemann-Lebesgue

Soit f de classe C! sur [a, b]. Montrer que

b
lim f f(He™ dt =0
a

n—>+oo

Exercice 5.2

Soit f continue sur [a, b] & valeurs complexes. A quelle condition a-t-on

f[a i f‘ - f[a’b] 1712
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