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Intégration

Dans tout ce chapitre 𝑎 et 𝑏 désigne des réels. Quand on note [𝑎, 𝑏], il est sous-entendu que 𝑎 ≤ 𝑏.

1 Intégration des fonctions en escalier

1.1 Fonctions en escalier sur un segment

Définition 1.1 Fonction en escalier

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

On dit qu’une application φ∶ [𝑎, 𝑏] → ℝ est en escalier s’il existe 𝑛 ∈ ℕ et
des réels 𝑥0, 𝑥1,… , 𝑥𝑛 tels que

(i) 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 ;

(ii) φ est constante sur chaque intervalle ]𝑥𝑖, 𝑥𝑖+1[ pour 𝑖 ∈ ⟦1, 𝑛 − 1⟧.

Une telle famille (𝑥𝑖)0≤𝑖≤𝑛 est appelée une subdivision de [𝑎, 𝑏] subordonnée
à φ.
L’ensemble des fonctions en escalier sur [𝑎, 𝑏] se note ℰ([𝑎, 𝑏], ℝ) ou plus sim-
plement ℰ([𝑎, 𝑏]). C’est un sous-espace vectoriel et un sous-anneau de ℝ[𝑎,𝑏].

1.2 Intégrale d’une fonction en escalier

Définition 1.2 Intégrale d’une fonction en escalier

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Soit φ ∈ ℰ([𝑎, 𝑏]) et 𝑢 = (𝑥𝑖)0≤𝑖≤𝑛 une subdivision subordonnée à φ.
Pour 𝑖 ∈ ⟦0, 𝑛 − 1⟧, on note 𝑐𝑖 la valeur de φ sur ]𝑥𝑖, 𝑥𝑖+1[.

La quantité
𝑛−1
∑
𝑖=0

𝑐𝑖(𝑥𝑖+1 − 𝑥𝑖) est indépendante de la subdivision 𝑢 choisie.

On l’appelle l’intégrale de φ sur [𝑎, 𝑏] et on la note ∫
[𝑎,𝑏]

φ.

1.3 Propriétés de l’intégrale des fonctions en escalier

Proposition 1.1 Propriétés de l’intégrale

Linéarité L’intégrale est une forme linéaire sur ℰ([𝑎, 𝑏]).

Positivité de l’intégrale L’intégrale d’une fonction en escalier positive est positive.

Croissance de l’intégrale Soit (φ, ψ) ∈ ℰ([𝑎, 𝑏])2 tel que φ ≤ ψ. Alors ∫
[𝑎,𝑏]

φ ≤ ∫
[𝑎,𝑏]

ψ.

Relation de Chasles Soit φ ∈ ℰ([𝑎, 𝑏]) et 𝑐 ∈]𝑎, 𝑏[. Alors les restrictions de φ à [𝑎, 𝑐] et [𝑐, 𝑏] sont en escalier et

∫
[𝑎,𝑏]

φ = ∫
[𝑎,𝑐]

φ|[𝑎,𝑐] +∫
[𝑐,𝑏]

φ|[𝑐,𝑏].
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2 Intégration des fonctions continues par morceaux

2.1 Fonctions continues par morceaux

Définition 2.1 Fonction continue par morceaux sur un segment

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

On dit qu’une application 𝑓∶ [𝑎, 𝑏] → ℝ est continue par morceaux s’il existe
𝑛 ∈ ℕ et des réels 𝑥0, 𝑥1,… , 𝑥𝑛 tels que

(i) 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 ;

(ii) 𝑓|]𝑥𝑖,𝑥𝑖+1[ est continue sur ]𝑥𝑖, 𝑥𝑖+1[ et prolongeable par continuité en 𝑥𝑖
et 𝑥𝑖+1 pour 𝑖 ∈ ⟦1, 𝑛 − 1⟧.

Une telle famille (𝑥𝑖)0≤𝑖≤𝑛 est appelée une subdivision de [𝑎, 𝑏] subordonnée
à 𝑓.
L’ensemble des fonctions continues par morceaux sur [𝑎, 𝑏] se note
𝒞𝑚([𝑎, 𝑏], ℝ) ou plus simplement 𝒞𝑚([𝑎, 𝑏]). C’est un sous-espace vectoriel
et un sous-anneau de ℝ[𝑎,𝑏].

Définition 2.2 Fonction continue par morceaux sur un intervalle

Une fonction est dite continue par morceaux sur un intervalle si sa restriction à tout segment inclus dans cet intervalle est
continue par morceaux sur ce segment.

Exemple 2.1

La fonction 𝑡 ↦ ⌊1/𝑡⌋ est continue par morceaux sur ℝ∗
+.

2.2 Approximation des fonctions continues par morceaux

Proposition 2.1

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). Pour tout réel ε > 0, il existe (φ, ψ) ∈ ℰ([𝑎, 𝑏])2 tel que :

φ ≤ 𝑓 ≤ ψ et ψ − φ ≤ ε

2.3 Intégrale d’une fonction continue par morceaux

Définition 2.3 Intégrale d’une fonction continue par morceaux

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). On pose :

I−(𝑓) = {∫
[𝑎,𝑏]

φ , φ ∈ ℰ([𝑎, 𝑏]) et φ ≤ 𝑓} I+(𝑓) = {∫
[𝑎,𝑏]

ψ , ψ ∈ ℰ([𝑎, 𝑏]) et ψ ≥ 𝑓}

Alors I−(𝑓) et I+(𝑓) admettent respectivement une borne supérieure et une borne inférieure et ces bornes sont égales.

On appelle cette borne commune l’intégrale de 𝑓 sur [𝑎, 𝑏] et on la note ∫
[𝑎,𝑏]

𝑓.

Remarque. On peut changer la valeur de 𝑓 en un nombre fini de points sans changer son intégrale.
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Notation 2.1

• Si 𝑎 ≤ 𝑏, ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = ∫

[𝑎,𝑏]
𝑓.

• Si 𝑎 ≥ 𝑏, ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = −∫

[𝑏,𝑎]
𝑓.

Attention!� Dans l’expression ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡, le 𝑡 s’appelle la variable d’intégration. Ce qui précède montre qu’une inté-

grale ne dépend pas de la variable d’intégration. Elle dépend seulement de ses bornes et de la fonction intégrée.

Remarque. Il y a une totale analogie avec les sommes qui ne dépendent pas de l’indice de sommation mais seulement des
bornes et du terme général.

2.4 Propriétés de l’intégrale

Proposition 2.2 Propriétés de l’intégrale

Linéarité L’intégrale est une forme linéaire sur 𝒞𝑚([𝑎, 𝑏]).

Positivité de l’intégrale L’intégrale d’une fonction continue par morceaux positive est positive.

Croissance de l’intégrale Soit (𝑓, 𝑔) ∈ 𝒞𝑚([𝑎, 𝑏])2 telles que 𝑓 ≤ 𝑔 sur [𝑎, 𝑏]. Alors ∫
[𝑎,𝑏]

𝑓 ≤ ∫
[𝑎,𝑏]

𝑔.

Inégalité triangulaire Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). Alors |𝑓| ∈ 𝒞𝑚([𝑎, 𝑏]) et
||||
∫
[𝑎,𝑏]

𝑓
||||
≤ ∫

[𝑎,𝑏]
|𝑓|.

Relation de Chasles Soient 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]) et 𝑐 ∈]𝑎, 𝑏[. Alors les restrictions de 𝑓 à [𝑎, 𝑐] et [𝑐, 𝑏] sont continues par

morceaux et ∫
[𝑎,𝑏]

𝑓 = ∫
[𝑎,𝑐]

𝑓|[𝑎,𝑐] +∫
[𝑐,𝑏]

𝑓|[𝑐,𝑏].

Proposition 2.3

Soit (𝑓, 𝑔) ∈ 𝒞(I)2 tel que 𝑓 ≤ 𝑔 sur I. Soit (𝑎, 𝑏) ∈ I2.

• Si 𝑎 ≤ 𝑏, ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 ≤ ∫

𝑏

𝑎
𝑔(𝑡)𝑑𝑡.

• Si 𝑎 ≥ 𝑏, ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 ≥ ∫

𝑏

𝑎
𝑔(𝑡)𝑑𝑡.

Exercice 2.1

Soit 𝑓 continue sur [0, 1]. Pour 𝑛 ∈ ℕ, on pose I𝑛 = ∫
1

0
𝑓(𝑡)𝑡𝑛 d𝑡. Montrer que lim

𝑛→+∞
I𝑛 = 0.
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Proposition 2.4

Soient 𝑓 continue sur un intervalle I. Soit (𝑎, 𝑏, 𝑐) ∈ I3. Alors

∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = ∫

𝑐

𝑎
𝑓(𝑡)𝑑𝑡 +∫

𝑏

𝑐
𝑓(𝑡)𝑑𝑡

Remarque. Cette version de la relation de Chasles est valable quelque soit l’ordre de 𝑎, 𝑏 et 𝑐.

Proposition 2.5

Soit 𝑓 une fonction continue et de signe constant sur [𝑎, 𝑏] (𝑎 < 𝑏). Alors∫
[𝑎,𝑏]

𝑓 = 0 si et seulement si 𝑓 = 0 sur [𝑎, 𝑏].

Remarque. Il suffit donc de montrer qu’une fonction continue positive prend une valeur strictement positive sur [𝑎, 𝑏] pour
prouver que son intégrale sur [𝑎, 𝑏] est strictement positive.

Attention!� La condition de continuité est essentielle. La fonction δ0 nulle sur ℝ∗ et valant 1 en 0 a une intégrale nulle
sur [−1, 1] sans pour autant être nulle sur [−1, 1].

Exercice 2.2

Soit 𝑓 continue sur [𝑎, 𝑏] à valeurs réelles. Montrer que
||||
∫
[𝑎,𝑏]

𝑓
||||
= ∫

[𝑎,𝑏]
|𝑓| si et seulement si 𝑓 est de signe constant sur

[𝑎, 𝑏].

3 Calcul de primitives et d’intégrales

3.1 Primitives

Définition 3.1 Primitive

Soit 𝑓 une fonction continue sur un intervalle I. On appelle primitive de 𝑓 sur I toute fonction de I dans ℝ dérivable sur
I et dont la dérivée vaut 𝑓.

Proposition 3.1

Si F est une primitive d’une fonction 𝑓 continue sur I, alors les autres primitives de 𝑓 sur I sont les fonctions F + λ avec
λ ∈ ℝ.

Remarque. En particulier, deux primitives d’une même fonction diffèrent d’une constante.

Attention!� Il est essentiel de considérer des primitives sur un intervalle.
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Théorème 3.1 Theorème fondamental de l’analyse

Soit 𝑓 une fonction continue sur un intervalle I.

(i) 𝑓 admet une primitive sur I.

(ii) Soit 𝑎 ∈ I. La fonction 𝑥 ↦ ∫
𝑥

𝑎
𝑓(𝑡)𝑑𝑡 est l’unique primitive de 𝑓 nulle en 𝑎.

(iii) Si F est une primitive de 𝑓 sur I, alors pour tout (𝑎, 𝑏) ∈ I2, ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = F(𝑏) − F(𝑎).

La quantité F(𝑏) − F(𝑎) se note [F]𝑏𝑎 ou encore [F(𝑡)]𝑡=𝑏𝑡=𝑎.

Remarque. Toutes les primitives de 𝑓 sur I sont donc du type 𝑥 ↦ ∫
𝑥

𝑎
𝑓(𝑡)𝑑𝑡 + C. Ceci justifie la notation vu plus tôt dans

l’année ∫𝑓(𝑡)𝑑𝑡 pour une primitive de 𝑓 définie à une constante additive près.

On remarque de plus qu’un calcul de primitives se ramène finalement à un calcul d’intégrales.

Exercice 3.1 Banal

Etablir la dérivabilité puis calculer la dérivée de la fonction ψ définie par

𝑥⟼∫
𝑒𝑥

𝑒−𝑥
√1+ ln2(𝑡)𝑑𝑡.

Corollaire 3.1

Soit 𝑓 ∈ C1(I). Alors, pour tout (𝑎, 𝑏) ∈ I2, ∫
𝑏

𝑎
𝑓′(𝑡)𝑑𝑡 = 𝑓(𝑏) − 𝑓(𝑎).

3.2 Méthodes de calcul
3.2.1 Intégration par parties

Proposition 3.2 Intégration par parties

Soit (𝑢, 𝑣) ∈ 𝒞1(I)2. Soit (𝑎, 𝑏) ∈ I2.

∫
𝑏

𝑎
𝑢′(𝑡)𝑣(𝑡)𝑑𝑡 = [𝑢𝑣]𝑏𝑎 −∫

𝑏

𝑎
𝑢(𝑡)𝑣′(𝑡)𝑑𝑡

Exemple 3.1

• Calcul d’une primitive de ln.

• Calcul d’une primitive de arctan.

• Calcul d’une primitive de 𝑥 ↦ 𝑥𝑛𝑒𝑥 pour 𝑛 = 0, 1, 2.
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Exercice 3.2 ★★ Intégrales de Wallis

On pose pour tout 𝑛 ⩾ 0,

I𝑛 = ∫
π/2

0
sin𝑛(𝑥)𝑑𝑥.

1. Calculer I0 et I1.

2. En intégrant par parties, trouver une relation de récurrence entre I𝑛 et I𝑛+2.

3. Donner une expression de I2,𝑛 et I2𝑛+1 en fonction de 𝑛.

4. Vérifier que (I𝑛)𝑛⩾0 est décroissante. En déduire que 𝑛 + 1
𝑛 + 2I𝑛 ⩽ I𝑛+1 ⩽ I𝑛.

5. Démontrer que I𝑛+1∼ I𝑛.

6. Établir que ∀𝑛 ∈ ℕ, (𝑛 + 1)I𝑛+1I𝑛 =
π
2 .

7. En déduire que

I𝑛∼√
π
2𝑛.

3.2.2 Changement de variable

Proposition 3.3 Changement de variable

Soient I un intervalle deℝ, φ une fonction de classe 𝒞1 sur I et 𝑓 une fonction continue sur φ(I). Alors pour tout (𝑎, 𝑏) ∈ I2

∫
φ(𝑏)

φ(𝑎)
𝑓(𝑡)𝑑𝑡 = ∫

𝑏

𝑎
𝑓(φ(𝑢))φ′(𝑢)𝑑𝑢

Remarque. On dit qu’on effectue le changement de variable 𝑡 = φ(𝑢).

Méthode Changement de variable

Soit à calculer l’intégrale ∫
β

α
𝑓(𝑡) d𝑡 via le changement de variable 𝑡 = φ(𝑢).

• On cherche 𝑎 et 𝑏 tels que φ(𝑎) = α et φ(𝑏) = β.

• On vérifie que φ est bien de classe 𝒞1 sur [𝑎, 𝑏].

• «A la physicienne», 𝑑𝑡𝑑𝑢 = φ′(𝑢) donc 𝑑𝑡 = φ′(𝑢) d𝑢.

• On remplace 𝑡 par φ(𝑢) et 𝑑𝑡 par φ′(𝑢) d𝑢 dans l’intégrale.
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Exemple 3.2

Soit à calculer ∫
1

−1
√1 − 𝑡2𝑑𝑡 en effectuant le changement de variable 𝑡 = sin𝑢.

• On a sin (−π2 ) = −1 et sin (π2 ) = 1.

• sin est bien de classe 𝒞1 sur [−π2 ,
π
2 ].

• 𝑑𝑡 = cos𝑢 d𝑢.

On en déduit que

∫
1

−1
√1 − 𝑡2 d𝑡 = ∫

π
2

−π
2

√1 − sin2 𝑢 cos𝑢 d𝑢 = ∫
π
2

−π
2

| cos𝑢| cos𝑢 d𝑢

= ∫
π
2

−π
2

cos2 𝑢 d𝑢 = 1
2 ∫

π
2

−π
2

(1 + cos 2𝑢)𝑑𝑢 = π
2

Attention!� Il n’y a pas à réfléchir à l’ordre des bornes ou à les replacer dans un soit disant «bon sens». Par exemple, si

l’on choisit d’effectuer le changement de variable 𝑡 = cos𝑢 pour le calcul de l’intégrale ∫
1

−1
√1 − 𝑡2 d𝑡. On obtient

∫
1

−1
√1 − 𝑡2 d𝑡 = ∫

0

π
√1 − cos2 𝑢(− sin𝑢) d𝑢

puisque cos(π) = −1 et cos(0) = 1.

Remarque. Quand on effectue un changement de variable, on exprime l’ancienne variable en fonction de la nouvelle variable
et on vérifie que cette fonction est𝒞1. Néanmoins, en pratique, il arrive souvent que l’on exprime la nouvelle variable en fonction
de l’ancienne variable.

Exemple 3.3

Pour calculer ∫
4

0

𝑑𝑡
√𝑡 + 1

, on effectue le changement de variable 𝑢 = √𝑡. En toute rigueur, on devrait dire 𝑡 = 𝑢2. Il faut

alors vérifier que φ∶ 𝑢 ↦ 𝑢2 est de classe 𝒞1 sur [0, 2] (et non 𝑡 ↦ √𝑡 de classe 𝒞1 sur [0, 4], ce qui est faux). On en
déduit que

∫
4

0

𝑑𝑡
√𝑡 + 1

= ∫
2

0

2𝑢 d𝑢
1 + 𝑢 = 2∫

2

0
(1 − 1

1 + 𝑢) d𝑢 = 4 − 2 ln 2
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Application au calcul de primitives usuelles

Soit 𝑎 > 0.

• Une primitive de 𝑥 ↦ 1
𝑥2 + 𝑎2 sur ℝ est 𝑥 ↦ 1

𝑎 arctan 𝑥𝑎 .

• Une primitive de 𝑥 ↦ 1
√𝑎2 − 𝑥2

sur ] − 𝑎, 𝑎[ est 𝑥 ↦ arcsin 𝑥𝑎 .

• Une primitive de 𝑥 ↦ − 1
√𝑎2 − 𝑥2

sur ] − 𝑎, 𝑎[ est 𝑥 ↦ arccos 𝑥𝑎 .

• Une primitive de 𝑥 ↦ 1
𝑎2 − 𝑥2 sur ] − 𝑎, 𝑎[ est 𝑥 ↦ 1

𝑎 argth 𝑥𝑎 .

• Une primitive de 𝑥 ↦ 1
√𝑎2 + 𝑥2

sur ℝ est 𝑥 ↦ argsh 𝑥𝑎 .

• Une primitive de 𝑥 ↦ 1
√𝑥2 − 𝑎2

sur ]𝑎, +∞[ est 𝑥 ↦ argch 𝑥𝑎 .

Exercice 3.3

Calcul d’un primitive de 𝑥 ↦ 𝑥
𝑥2 + 𝑥 + 1 .

3.2.3 Parité et périodicité

Proposition 3.4 Intégration d’une fonction paire ou impaire

Soit 𝑓 une fonction continue sur un intervalle I symétrique par rapport à 0.

• Si 𝑓 est paire, alors pour tout 𝑎 ∈ I,

∫
0

−𝑎
𝑓(𝑡) d𝑡 = ∫

𝑎

0
𝑓(𝑡) d𝑡 et ∫

𝑎

−𝑎
𝑓(𝑡)𝑑𝑡 = 2∫

𝑎

0
𝑓(𝑡)𝑑𝑡

• Si 𝑓 est impaire,

∫
0

−𝑎
𝑓(𝑡) d𝑡 = −∫

𝑎

0
𝑓(𝑡) d𝑡 et ∫

𝑎

−𝑎
𝑓(𝑡)𝑑𝑡 = 0

Proposition 3.5

Soient 𝑓 une fonction continue et T-périodique sur ℝ. Alors pour tout 𝑎 ∈ ℝ

∫
𝑎+T

𝑎
𝑓(𝑡) d𝑡 = ∫

T

0
𝑓(𝑡) d𝑡

Remarque. Autrement dit, l’intégrale de 𝑓 sur tout intervalle de longueur une période est la même.

3.2.4 Polynômes trigonométriques
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Méthode Intégration des polynômes trigonométriques

Pour intégrer un polynôme trigonométrique, il suffit de le linéariser. Se reporter au chapitre sur les complexes.

Exemple 3.4

Calcul de ∫ sin2 𝑥𝑑𝑥.

3.2.5 Passage en complexe

Méthode Passage en complexe

On sait que la partie réelle (resp. imaginaire) de l’intégrale est l’intégrale de la partie réelle (resp.imaginaire). Il est parfois
plus facile de passer en complexe pour revenir en réel.

Exemple 3.5

Calcul de ∫
2π

0
𝑒𝑡 sin 𝑡𝑑𝑡.

3.2.6 Fractions rationnelles

Méthode Intégration des fractions rationnelles

Pour intégrer une fraction rationnelle F, on la décompose en éléments simples.
On est alors ramené à intégrer des termes de la forme 1

(𝑥 − λ)𝑛
.

• Si 𝑛 > 1 ou si λ ∈ ℝ, on connaît la primitive d’un tel terme.

• Si 𝑛 = 1 et λ ∈ ℂ ∖ ℝ.

– Si F n’est pas à coefficients réels, on pose λ = 𝑎 + 𝑖𝑏 et on utilise la quantité conjuguée :

1
𝑥 − λ =

𝑥 − 𝑎
(𝑥 − 𝑎)2 + 𝑏2

+ 𝑖𝑏
(𝑥 − 𝑎)2 + 𝑏2

Le premier terme donne une primitive en ln et le deuxième terme une primitive en arctan.

– Si F est à coefficients réels, la DES de F comporte deux termes conjugués 𝑎
𝑥 − λ et 𝑎

𝑥 − λ
. On regroupe ces

deux termes et on obtient un terme du type 𝑎𝑥 + 𝑏
𝑥2 + 𝑝𝑥 + 𝑞 où 𝑥2+𝑝𝑥+𝑞 n’admet pas de racines réelles. L’idée

est alors de mettre le trinôme 𝑥2 + 𝑝𝑥 + 𝑞 sous forme canonique. On obtient alors une primitive en ln et en
arctan.

Exemple 3.6

Calcul de ∫ 4
(𝑥2 + 1)2

𝑑𝑥.
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3.2.7 Fractions rationnelles trigonométriques

On appelle fraction rationnelle trigonométrique une fonction du type 𝑡 ↦ R(cos 𝑡, sin 𝑡) où R est une fraction rationnelle à

deux indéterminées (e.g. R(X, Y) = X3 + X2Y − Y2

X2 − XY ).

Méthode Intégration des fractions rationnelles trigonométriques

On utilise la règle de Bioche pour se ramener à l’intégration d’une fraction rationnelle traditionnelle.

• Si R(cos 𝑡, sin 𝑡)𝑑𝑡 est invariant par la transformation 𝑡 ↦ −𝑡, on effectue le changement de variable 𝑢 = cos 𝑡.

• Si R(cos 𝑡, sin 𝑡)𝑑𝑡 est invariant par la transformation 𝑡 ↦ π − 𝑡, on effectue le changement de variable 𝑢 = sin 𝑡.

• Si R(cos 𝑡, sin 𝑡)𝑑𝑡 est invariant par la transformation 𝑡 ↦ π + 𝑡, on effectue le changement de variable 𝑢 = tan 𝑡.

• Sinon on effectue le changement de variable 𝑢 = tan 𝑡
2 et on utilise les formules de paramétrage rationnel du cercle

trigonométrique.

Attention!� Il faut prendre en compte le « d𝑡» pour le test de l’invariance par les différentes transformations.

Exemple 3.7

∫
π

0

sin 𝑡
4 − cos2 𝑡𝑑𝑡 =

ln 3
2

3.2.8 Fractions rationnelles hyperboliques

On appelle fraction rationnelle hyperbolique une fonction du type 𝑡 ↦ R(ch 𝑡, sh 𝑡) où R est une fraction rationnelle à deux

indéterminées (e.g. R(X, Y) = X3 + X2Y − Y2

X2 − XY ).

Méthode Intégration des fractions rationnelles hyperboliques

On pose 𝑢 = 𝑒𝑡 et on se ramène à l’intégration d’une fraction rationnelle classique.

4 Approximation d’intégrales

4.1 Méthode des rectangles

Définition 4.1 Somme de Riemann

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). On appelle somme de Riemann de 𝑓 l’une des deux sommes suivantes :

R𝑛(𝑓) =
𝑏 − 𝑎
𝑛

𝑛−1
∑
𝑘=0

𝑓(𝑎𝑘) R′𝑛(𝑓) =
𝑏 − 𝑎
𝑛

𝑛
∑
𝑘=1

𝑓(𝑎𝑘)

où 𝑎𝑘 = 𝑎 + 𝑘𝑏 − 𝑎
𝑛 pour tout 𝑘 ∈ ⟦0, 𝑛⟧ et 𝑛 est un entier non nul.
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Interprétation graphique des sommes de Riemann

Une somme de Riemann n’est que l’approximation de l’aire correspondant à l’intégrale de 𝑓 sur [𝑎, 𝑏] par la somme des
aires des rectangles dans la figure suivante.

Somme de Riemann R𝑛(𝑓) Somme de Riemann R′𝑛(𝑓)

Les aires des rectangles sont les quantités 𝑏 − 𝑎
𝑛 𝑓(𝑎𝑘).

Proposition 4.1 Convergence des sommes de Riemann

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). Alors les suites (R𝑛(𝑓)) et (R′𝑛(𝑓)) convergent vers ∫
[𝑎,𝑏]

𝑓.

Proposition 4.2

Soit 𝑓 une fonction K-lipschitzienne sur [𝑎, 𝑏]. Alors

||||
∫
[𝑎,𝑏]

𝑓 − R𝑛(𝑓)
||||
≤ K(𝑏 − 𝑎)2

2𝑛
||||
∫
[𝑎,𝑏]

𝑓 − R′𝑛(𝑓)
||||
≤ K(𝑏 − 𝑎)2

2𝑛

Remarque. C’est notamment le cas lorsque 𝑓 est de classe C1 sur [𝑎, 𝑏]. Ce qu’il faut retenir, c’est que l’erreur commise en
approchant l’intégrale par la somme de Riemann est un 𝒪(

1
𝑛).

4.2 Méthode des trapèzes

Définition 4.2

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏]). On pose :

U𝑛(𝑓) =
𝑏 − 𝑎
𝑛

𝑛−1
∑
𝑘=0

𝑓(𝑎𝑘) + 𝑓(𝑎𝑘+1)
2 avec ∀𝑘 ∈ ⟦0, 𝑛⟧ , 𝑎𝑘 = 𝑎 + 𝑘𝑏 − 𝑎

𝑛

où 𝑛 est un entier non nul.
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Interprétation graphique de la méthode des trapèzes

La méthode des trapèzes consiste à approcher l’aire correspondant à l’intégrale de 𝑓 sur [𝑎, 𝑏] par la somme des aires des
trapèzes dans la figure suivante.

Les aires des trapèzes sont les quantités 𝑏 − 𝑎
𝑛

𝑓(𝑎𝑘) + 𝑓(𝑎𝑘+1)
2 .

Le dessin permet de constater que la méthode des trapèzes semble plus efficace que la méthode des rectangles.

Remarque. On pourrait prouver que si 𝑓 est de classeC2 sur [𝑎, 𝑏], l’erreur commise en approchant l’intégrale par la méthode
des trapèzes est un 𝒪(

1
𝑛2 ).

5 Cas des fonctions à valeurs complexes

Définition 5.1 Fonction continue par morceaux à valeurs complexes

Une application 𝑓∶ [𝑎, 𝑏] → ℂ est dite continue par morceaux si ses parties réelle et imaginaire le sont.
On note 𝒞𝑚([𝑎, 𝑏], ℂ) l’ensemble des fonctions continues par morceaux à valeurs complexes.

Définition 5.2 Intégrale d’une fonction continue par morceaux à valeurs complexes

Soit 𝑓 ∈ 𝒞𝑚([𝑎, 𝑏], ℂ). On appelle intégrale de 𝑓 sur [𝑎, 𝑏] le nombre complexe :

∫
[𝑎,𝑏]

𝑓 = ∫
[𝑎,𝑏]

Re(𝑓) + 𝑖∫
[𝑎,𝑏]

Im(𝑓)

En particulier,

Re (∫
[𝑎,𝑏]

𝑓) = ∫
[𝑎,𝑏]

Re(𝑓) Im (∫
[𝑎,𝑏]

𝑓) = ∫
[𝑎,𝑏]

Im(𝑓)

Quasiment toutes les propriétés des intégrales de fonctions continues par morceaux à valeurs réelles restent valables pour
des intégrales de fonctions continues par morceaux à valeurs complexes quitte à modifier les valeurs absolues éventuelles par
des modules. Les seules propriétés qui ne sont pas conservées sont celles qui feraient intervenir des inégalités entre complexes,
à savoir :
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• la positivité de l’intégrale ;

• la croissance de l’intégrale ;

• le résultat assurant qu’une fonction continue et de signe constant est d’intégrale nulle si et seulement si elle est constam-
ment nulle.

Exercice 5.1 Lemme de Riemann-Lebesgue

Soit 𝑓 de classe 𝒞1 sur [𝑎, 𝑏]. Montrer que

lim
𝑛→+∞

∫
𝑏

𝑎
𝑓(𝑡)𝑒𝑖𝑛𝑡 d𝑡 = 0

Exercice 5.2

Soit 𝑓 continue sur [𝑎, 𝑏] à valeurs complexes. A quelle condition a-t-on
||||
∫
[𝑎,𝑏]

𝑓
||||
= ∫

[𝑎,𝑏]
|𝑓|?
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