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Limite et continuité de fonctions

Soit 𝑎 ∈ ℝ. Dans tout ce chapitre, on dira qu’une fonction 𝑓 de domaine de définition D𝑓 est définie au voisinage de 𝑎
s’il existe un réel ℎ > 0 tel que l’on soit dans un des trois cas suivants :

• (D𝑓 ∩ [𝑎−ℎ, 𝑎]) ⧵ {𝑎} = [𝑎−ℎ, 𝑎[ i.e. 𝑓 est définie dans un voisinage à gauche de 𝑎 et éventuellement non définie en 𝑎 ;

• (D𝑓 ∩ [𝑎, 𝑎 + ℎ]) ⧵ {𝑎} =]𝑎, 𝑎 + ℎ] i.e. 𝑓 est définie dans un voisinage à droite de 𝑎 et éventuellement non définie en 𝑎 ;

• (D𝑓 ∩ [𝑎 − ℎ, 𝑎 + ℎ]) ⧵ {𝑎} = [𝑎 − ℎ, 𝑎 + ℎ] ⧵ {𝑎} i.e. 𝑓 est définie dans un voisinage de 𝑎 et éventuellement non définie
en 𝑎.

Exemple 0.1

• 𝑥 ↦ 1
𝑥 − 1 est définie au voisinage de 1.

• 𝑥 ↦ √−2 − 𝑥 est définie au voisinage de −2.

On dira de plus que 𝑓 est :

• définie au voisinage de +∞ s’il existe A ∈ ℝ tel que [A,+∞[⊂ D𝑓 ;

• définie au voisinage de −∞ s’il existe A ∈ ℝ tel que ] −∞,A] ⊂ D𝑓.

Exemple 0.2

𝑥 ↦ 1
𝑥3 − 𝑥 − 1 est définie au voisinage de +∞ et −∞.

Enfin, on dira qu’une propriété portant sur 𝑓 est vraie au voisinage de 𝑎 ∈ ℝ si cette propriété est vraie sur l’intersection
de D𝑓 avec un intervalle du type

• [𝑎 − ℎ, 𝑎 + ℎ] avec ℎ > 0 si 𝑎 ∈ ℝ ;

• [A,+∞[ avec A ∈ ℝ si 𝑎 = +∞ ;

• ] −∞,A] avec A ∈ ℝ si 𝑎 = −∞.

Exemple 0.3

La fonction 𝑥 ↦ 𝑥2(1 − 𝑥2) est positive au voisinage de 0 et négative au voisinage de +∞ et −∞.

1 Limite d’une fonction

1.1 Définition
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Définition 1.1 Limite d’une fonction

Soit (𝑎, 𝑙) ∈ ℝ
2
. Soit 𝑓 une fonction définie au voisinage de 𝑎. On dit que 𝑓 admet ℓ pour limite en 𝑎 si :

• Cas 𝑎 ∈ ℝ et ℓ ∈ ℝ :

∀ε ∈ ℝ∗
+, ∃α ∈ ℝ∗

+, ∀𝑥 ∈ D𝑓, |𝑥 − 𝑎| < α ⇒ |𝑓(𝑥) − ℓ| < ε

• Cas 𝑎 ∈ ℝ et ℓ = +∞ :

∀A ∈ ℝ, ∃α ∈ ℝ∗
+, ∀𝑥 ∈ D𝑓, |𝑥 − 𝑎| < α ⇒ 𝑓(𝑥) > A

• Cas 𝑎 ∈ ℝ et ℓ = −∞ :

∀A ∈ ℝ, ∃α ∈ ℝ∗
+, ∀𝑥 ∈ D𝑓, |𝑥 − 𝑎| < α ⇒ 𝑓(𝑥) < A

• Cas 𝑎 = +∞ et ℓ ∈ ℝ :

∀ε ∈ ℝ∗
+, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 > B ⇒ |𝑓(𝑥) − ℓ| < ε

• Cas 𝑎 = +∞ et ℓ = +∞ :
∀A ∈ ℝ, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 > B ⇒ 𝑓(𝑥) > A

• Cas 𝑎 = +∞ et ℓ = −∞ :
∀A ∈ ℝ, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 > B ⇒ 𝑓(𝑥) < A

• Cas 𝑎 = −∞ et ℓ ∈ ℝ :

∀ε ∈ ℝ∗
+, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 < B ⇒ |𝑓(𝑥) − ℓ| < ε

• Cas 𝑎 = −∞ et ℓ = +∞ :
∀A ∈ ℝ, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 < B ⇒ 𝑓(𝑥) > A

• Cas 𝑎 = −∞ et ℓ = −∞ :
∀A ∈ ℝ, ∃B ∈ ℝ, ∀𝑥 ∈ D𝑓, 𝑥 < B ⇒ 𝑓(𝑥) < A

Remarque. Ceci veut dire que quitte à prendre 𝑥 suffisamment proche de 𝑎, on peut rendre 𝑓(𝑥) aussi proche de 𝑙 que l’on
veut.

Remarque. On obtient des définitions équivalentes en remplaçant les inégalités larges par des inégalités strictes.

Théorème 1.1 Unicité de la limite

Soit 𝑓 une fonction définie au voisinage de 𝑎. Si 𝑓 admet une limite ℓ en 𝑎, elle est unique. On note alors lim
𝑎
𝑓 = ℓ ou

lim
𝑥→𝑎

𝑓(𝑥) = 𝑙.
Si 𝑓 est définie en 𝑎 et admet une limite en 𝑎, alors lim

𝑎
𝑓 = 𝑓(𝑎).
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Proposition 1.1 Retour en zéro

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ. Soit ℓ ∈ ℝ. Alors :

• Si 𝑙 ∈ ℝ :
lim
𝑥→𝑎

𝑓(𝑥) = ℓ ⟺ lim
𝑥→𝑎

𝑓(𝑥) − 𝑙 = 0

• Si 𝑎 ∈ ℝ :
lim
𝑥→𝑎

𝑓(𝑥) = ℓ ⟺ lim
ℎ→0

𝑓(𝑎 + ℎ) = 𝑙

Proposition 1.2 Limite et «bornitude»

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ. Si 𝑓 admet une limite finie en 𝑎, alors 𝑓 est bornée au voisinage de 𝑎.

Proposition 1.3 Limite et signe

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ. Si 𝑓 admet une limite ℓ > 0 en 𝑎, alors 𝑓 est minorée par un réel
strictement positif au voisinage de 𝑎.

Corollaire 1.1 Signe et équivalent

Si 𝑓 ∼
𝑎
𝑔, alors 𝑓 et 𝑔 sont de même signe au voisinage de 𝑎.

1.2 Limite à gauche, à droite

Définition 1.2 Limite à gauche, à droite

Soit 𝑎 ∈ ℝ et ℓ ∈ ℝ. Soit 𝑓 une fonction définie au voisinage de 𝑎.

• On dit que 𝑓 admet ℓ pour limite à gauche en 𝑎 si la restriction de 𝑓 àD𝑓∩]−∞, 𝑎[ admet ℓ pour limite en 𝑎. Dans
ce cas, cette limite est unique et on la note lim

𝑎−
𝑓 ou lim

𝑥→𝑎−
𝑓(𝑥) ou encore lim

𝑥→𝑎
𝑥<𝑎

𝑓(𝑥).

• On dit que 𝑓 admet ℓ pour limite à droite en 𝑎 si la restriction de 𝑓 à D𝑓∩]𝑎, +∞[ admet ℓ pour limite en 𝑎. Dans
ce cas, cette limite est unique et on la note lim

𝑎+
𝑓 ou lim

𝑥→𝑎+
𝑓(𝑥) ou encore lim

𝑥→𝑎
𝑥>𝑎

𝑓(𝑥).

Proposition 1.4 Lien entre limite simple et limite à gauche, à droite

Soient 𝑎 ∈ ℝ et ℓ ∈ ℝ. Soit 𝑓 une fonction définie au voisinage de 𝑎.

• Si 𝑓 est définie en 𝑎 :
lim
𝑎
𝑓 = ℓ ⟺ (lim

𝑎−
𝑓 = lim

𝑎+
𝑓 = ℓ et 𝑓(𝑎) = ℓ)

• Si 𝑓 n’est pas définie en 𝑎 :
lim
𝑎
𝑓 = ℓ ⟺ lim

𝑎−
𝑓 = lim

𝑎+
𝑓 = ℓ
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Attention!� Si 𝑓 est définie en 𝑎, il ne faut pas oublier la condition 𝑓(𝑎) = 𝑙. La fonction 𝑓 définie par 𝑓(𝑥) = 0 si 𝑥 ≠ 0
et 𝑓(0) = 1 admet 0 pour limite à gauche et à droite en 0 mais n’admet pas de limite en 0. Par contre, 𝑓|ℝ∗ admet 0 pour
limite en 0. Subtil...

2 Propriétés des limites

2.1 Caractérisation séquentielle de la limite

Théorème 2.1 Caractérisation séquentielle de la limite

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ. Soit ℓ ∈ ℝ. Les propositions suivantes sont équivalentes :

(i) lim
𝑎
𝑓 = ℓ.

(ii) Pour toute suite (𝑢𝑛) à valeurs dans D𝑓 de limite 𝑎, (𝑓(𝑢𝑛)) a pour limite ℓ.

Méthode Montrer qu’une fonction n’admet pas de limite

Pour montrer qu’une fonction 𝑓 n’admet pas de limite en 𝑎, il suffit de trouver deux suites (𝑢𝑛) et (𝑣𝑛) de même limite 𝑎
telles que (𝑓(𝑢𝑛)) et (𝑓(𝑣𝑛)) possèdent des limites différentes.

Exemple 2.1

La fonction 𝑥 ↦ sin 1𝑥 n’admet pas de limite en 0.

2.2 Limite et borne supérieure ou inférieure
Dans la proposition suivante I désigne un intervalle et ̄I désigne l’intervalle I augmenté de ses bornes (y compris les bornes

infinies). Par exemple, si I =]0, +∞[, I = [0, +∞] (intervalle de ℝ).

Proposition 2.1 Limite et borne supérieure/inférieure

Soit 𝑓∶ I → ℝ. Soit 𝑎 ∈ ̄I.

• Si 𝑓 est majorée par M sur I et si lim
𝑎
𝑓 = M, alors sup

I
𝑓 = M.

• Si 𝑓 est minorée par 𝑚 sur I et si lim
𝑎
𝑓 = 𝑚, alors inf

I
𝑓 = 𝑚.

Exemple 2.2

inf
𝑥∈ℝ

1
1 + 𝑥2 = 0 car 𝑓 est minorée par 0 sur ℝ et lim

𝑥→+∞

1
1 + 𝑥2 = 0.

2.3 Opérations sur les limites
Les résultats sur la limite d’une somme, d’un produit, d’un inverse et d’un quotient sont les mêmes que pour les suites. Se

reporter à ce chapitre.

http://lgarcin.github.io 4

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Proposition 2.2 Composition de limites

Soient 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ et 𝑔 une fonction définie au voisinage de 𝑏 ∈ ℝ. Soit enfin ℓ ∈ ℝ.
Si lim

𝑎
𝑓 = 𝑏 et si lim

𝑏
𝑔 = ℓ, alors lim

𝑎
𝑔 ∘ 𝑓 = ℓ.

2.4 Passage à la limite

Proposition 2.3 Passage à la limite

Soient 𝑓 et 𝑔 deux fonction définie au voisinage de 𝑎 ∈ ℝ. Soit (ℓ, ℓ′, 𝑚,M) ∈ ℝ4.

(i) Si lim
𝑎
𝑓 = ℓ et lim

𝑎
𝑔 = ℓ′ et si 𝑓 ≤ 𝑔 au voisinage de 𝑎, alors ℓ ≤ ℓ′.

(ii) Si lim
𝑎
𝑓 = ℓ et 𝑓 ≤ M au voisinage de 𝑎, alors ℓ ≤ M.

(iii) Si lim
𝑎
𝑓 = ℓ et 𝑓 ≥ 𝑚 au voisinage de 𝑎, alors ℓ ≥ 𝑚.

Attention!� Ceci n’est valable qu’avec des inégalités larges. En effet, 1
𝑥2 > 0 pour tout 𝑥 > 0 et lim

𝑥→+∞

1
𝑥2 = 0 mais on

n’a évidemment pas 0 > 0.

3 Théorèmes d’existence de limite
On retrouve les mêmes grands théorèmes que pour les suites. Les résultats sur les suites extraites n’ont pas d’équivalent

dans le cadre des limites de fonctions. Il est à noter que ces théorèmes découlent essentiellement de l’existence d’une relation
d’ordre sur ℝ.

3.1 Théorèmes d’encadrement, de minoration et de majoration

Théorème 3.1 Théorèmes d’encadrement, de minoration et de majoration

Soient 𝑎 ∈ ℝ et ℓ ∈ ℝ. Soient 𝑓, 𝑔 et ℎ trois fonctions définies au voisinage de 𝑎.

Théorème des gendarmes/d’encadrement : Si lim
𝑎
𝑓 = lim

𝑎
ℎ = 𝑙 et 𝑓 ≤ 𝑔 ≤ ℎ au voisinage de 𝑎, alors 𝑔 admet une

limite en 𝑎 et celle-ci vaut ℓ.

Théorème de minoration : Si lim
𝑎
𝑓 = +∞ et 𝑓 ≤ 𝑔 au voisinage de 𝑎, alors 𝑔 admet une limite en 𝑎 et celle-ci vaut

+∞.

Théorème de majoration : Si lim
𝑎
ℎ = −∞ et 𝑔 ≤ ℎ au voisinage de 𝑎, alors 𝑔 admet une limite en 𝑎 et celle-ci vaut

−∞.

Remarque. Il existe une version «améliorée» du théorème des gendarmes. Si 𝑓 ≤ 𝑔 ≤ ℎ au voisinage de 𝑎 et si 𝑓 ∼
𝑎
ℎ, alors

𝑓 ∼
𝑎
𝑔 ∼

𝑎
ℎ.

Corollaire 3.1

Soient 𝑓 et ε deux fonctions définies au voisinage de 𝑎 ∈ ℝ. Si |𝑓| ≤ ε au voisinage de 𝑎 et si lim
𝑎
ε = 0, alors lim

𝑎
𝑓 = 0.
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Corollaire 3.2

Soient 𝑓 et ε deux fonctions définies au voisinage de 𝑎 ∈ ℝ. Si 𝑓 est bornée au voisinage de 𝑎 et si lim
𝑎
ε = 0, alors

lim
𝑎
𝑓ε = 0.

Exemple 3.1

lim
𝑥→0

𝑥 sin 1𝑥 = 0.

Corollaire 3.3

Soient 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎 ∈ ℝ.

• Si 𝑓 est minorée au voisinage de 𝑎 et si lim
𝑎
𝑔 = +∞, alors lim

𝑎
𝑓 + 𝑔 = +∞.

• Si 𝑓 est majorée au voisinage de 𝑎 et si lim
𝑎
𝑔 = −∞, alors lim

𝑎
𝑓 + 𝑔 = −∞.

3.2 Théorème de la limite monotone
Dans le théorème suivant I désigne un intervalle et ̊I désigne l’intervalle I privé de ses bornes. Par exemple, si I = [π, +∞[,

̊I =]π, +∞[.

Théorème 3.2 Théorème de la limite monotone

Soit 𝑓 une fonction monotone sur un intervalle I. On pose 𝑚 = inf I et M = sup I (avec éventuellement 𝑚 = −∞ et
M = +∞).

• Si 𝑓 est croissante :

(i) 𝑓 admet une limite finie à gauche et à droite en tout point 𝑎 ∈ ̊I. De plus,
– lim

𝑎−
𝑓 = sup

I∩]−∞,𝑎[
𝑓 ;

– lim
𝑎+

𝑓 = inf
I∩]𝑎,+∞[

𝑓 ;

– lim
𝑎−

𝑓 ≤ 𝑓(𝑎) ≤ lim
𝑎+

𝑓.

(ii) 𝑓 admet une limite en 𝑚+. Si 𝑓 est minorée sur I, cette limite est finie et vaut inf
I
𝑓, sinon elle vaut −∞.

(iii) 𝑓 admet une limite en M−. Si 𝑓 est majorée sur I, cette limite est finie et vaut sup
I
𝑓, sinon elle vaut +∞.

• Si 𝑓 est décroissante :

(i) 𝑓 admet une limite finie à gauche et à droite en tout point 𝑎 ∈ ̊I. De plus,
– lim

𝑎−
𝑓 = inf

I∩]−∞,𝑎[
𝑓 ;

– lim
𝑎+

𝑓 = sup
I∩]𝑎,+∞[

𝑓 ;

– lim
𝑎−

𝑓 ≥ 𝑓(𝑎) ≥ lim
𝑎+

𝑓.

(ii) 𝑓 admet une limite en 𝑚+. Si 𝑓 est majorée sur I, cette limite est finie et vaut sup
I
𝑓, sinon elle vaut +∞.

(iii) 𝑓 admet une limite en M−. Si 𝑓 est minorée sur I, cette limite est finie et vaut inf
I
𝑓, sinon elle vaut −∞.
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Exercice 3.1 ★★★

Soit 𝑓∶ ℝ → ℝ une fonction décroissante telle que 𝑓(𝑥) + 𝑓(𝑥 + 1) ∼
𝑥→+∞

1
𝑥 .

1. Étudier la limite de 𝑓 en +∞.

2. Donner un équivalent de 𝑓 au voisinage de +∞.

4 Continuité ponctuelle

4.1 Définition

Définition 4.1 Continuité en un point

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ et définie en 𝑎. On dit que 𝑓 est continue en 𝑎 si 𝑓 admet une limite
finie en 𝑎. Dans ce cas, lim

𝑎
𝑓 = 𝑓(𝑎). Donc 𝑓 est continue en 𝑎 si :

∀ε ∈ ℝ∗
+, ∃α ∈ ℝ∗

+, ∀𝑥 ∈ D𝑓, |𝑥 − 𝑎| < α ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < ε

Remarque. Cette définition peut aussi se formuler en termes de développement limité. Se reporter à ce chapitre.

Remarque. A nouveau, on obtient une définition équivalente en remplaçant les inégalités strictes par des inégalités larges.

Méthode Continuité en pratique

Pour montrer qu’une fonction 𝑓 est continue en 𝑎, il suffit de montrer que lim
𝑥→𝑎
𝑥≠𝑎

𝑓(𝑥) = 𝑓(𝑎).

Exemple 4.1

La fonction 𝑓 définie par 𝑓(𝑥) = 𝑒−
1
𝑥2 si 𝑥 ≠ 0 et 𝑓(0) = 0 est continue en 0.

4.2 Continuité à gauche, à droite

Définition 4.2 Continuité à droite, à gauche

Soit 𝑓 une fonction définie au voisinage de 𝑎 et définie en 𝑎.

• On dit que 𝑓 est continue à gauche en 𝑎 si sa restriction à D𝑓∩] −∞, 𝑎] est continue en 𝑎 i.e. si lim
𝑎−

𝑓 = 𝑓(𝑎).

• On dit que 𝑓 est continue à droite en 𝑎 si sa restriction à D𝑓 ∩ [𝑎, +∞[ est continue en 𝑎 i.e. si lim
𝑎+

𝑓 = 𝑓(𝑎).

Exemple 4.2

Soit 𝑛 ∈ ℤ. La fonction partie entière est continue à droite en 𝑛 mais pas à gauche.
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Proposition 4.1

Soit 𝑓 une fonction définie au voisinage de 𝑎 et définie en 𝑎. Alors 𝑓 est continue en 𝑎 si et seulement si elle est continue
à gauche et à droite en 𝑎.

Méthode Continuité en pratique (bis)

Pour montrer qu’une fonction 𝑓 est continue en 𝑎, il suffit de montrer que lim
𝑎−

𝑓 = lim
𝑎+

𝑓 = 𝑓(𝑎).

Exemple 4.3

La fonction 𝑓 définie par 𝑓(𝑥) = 𝑒−
1
𝑥 si 𝑥 > 0, 𝑓(𝑥) = 𝑒

1
𝑥 si 𝑥 < 0 et 𝑓(0) = 0 est continue en 0.

4.3 Prolongement par continuité

Définition 4.3 Prolongement par continuité

Soit 𝑓 une fonction définie au voisinage de 𝑎 mais non définie en 𝑎. On dit que 𝑓 est prolongeable par continuité en 𝑎
si 𝑓 admet une limite finie en 𝑎. Le prolongement ̄𝑓 de 𝑓 obtenu en posant ̄𝑓(𝑎) = lim

𝑎
𝑓 est alors continu en 𝑎. C’est

l’unique prolongement continu de 𝑓 en 𝑎.

Exemple 4.4

• On peut prolonger la fonction 𝑓∶ 𝑥 ↦ sin𝑥
𝑥 définie sur ℝ∗ par continuité en 0 en posant 𝑓(0) = 1.

• On peut prolonger la fonction 𝑓∶ 𝑥 ↦ 𝑒−
1
𝑥 définie sur ℝ∗

+ par continuité en 0 en posant 𝑓(0) = 0. Par contre, la
même fonction définie sur ℝ∗ n’est pas prolongeable par continuité en 0.

4.4 Caractérisation séquentielle de la continuité

Théorème 4.1 Caractérisation séquentielle de la continuité

Soit 𝑓 une fonction définie au voisinage de 𝑎 ∈ ℝ et définie en 𝑎. Les propositions suivantes sont équivalentes :

(i) 𝑓 est continue en 𝑎.

(ii) Pour toute suite (𝑢𝑛) à valeurs dans D𝑓 de limite 𝑎, (𝑓(𝑢𝑛)) a pour limite 𝑓(𝑎).

Exemple 4.5

La fonction indicatrice de ℚ {
ℝ ⟶ ℝ

𝑥 ⟼ {
1 si 𝑥 ∈ ℚ
0 sinon

n’est continue en aucun point.
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Exemple 4.6

La fonction {
ℝ ⟶ ℝ

𝑥 ⟼ {
𝑥 si 𝑥 ∈ ℚ
0 sinon

est continue en 0 mais nulle part ailleurs.

Remarque. Cet exemple illustre le fait qu’une fonction continue en un point n’est pas forcément continue au voisinage de ce
point.

Exercice 4.1

Montrer que les endomorphismes de groupe de (ℝ,+) continus sont les homothéties i.e. les applications 𝑥 ↦ λ𝑥 avec
λ ∈ ℝ.

4.5 Opération sur les fonctions continues en un point
La somme et le produit de deux fonctions continues en un point sont continus en ce point. L’inverse d’une fonction continue

en un point non nulle en ce point est continu en ce point. On en déduit le résultat sur un quotient de fonctions continues en un
point.
On a les mêmes résultats pour la continuité à gauche et à droite.

Proposition 4.2 Continuité ponctuelle et composition

Soit 𝑓 une fonction définie au voisinage de 𝑎 et continue en 𝑎. Soit 𝑔 une fonction définie au voisinage de 𝑓(𝑎) et continue
en 𝑓(𝑎). Alors 𝑔 ∘ 𝑓 est continue en 𝑎.

5 Continuité sur un intervalle

5.1 Définition
Dans ce paragraphe, I désigne un intervalle.

Définition 5.1 Continuité sur un intervalle

Soit 𝑓∶ I → ℝ. On dit que 𝑓 est continue sur I si 𝑓 est continue en tout point de I.
On note 𝒞(I, ℝ) ou 𝒞0(I, ℝ) l’ensemble des fonctions continues sur I à valeurs dans ℝ.

5.2 Opérations sur les fonctions continues sur un intervalle
La somme et le produit de deux fonctions continues sur I sont continus sur I. L’inverse d’une fonction continue sur I et ne

s’annulant pas sur I est continue sur I. On en déduit le résultat sur un quotient de fonctions continues sur I.
Remarque. On en déduit que 𝒞0(I, ℝ) est un ℝ-espace vectoriel.

Proposition 5.1 Continuité sur un intervalle et composition

Soit 𝑓∶ I → ℝ et 𝑔∶ J → ℝ. On suppose 𝑓(I) ⊂ J. Si 𝑓 est continue sur I et 𝑔 est continue sur J alors 𝑔 ∘ 𝑓 est continue
sur I.
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Exemple 5.1

La fonction 𝑥 ↦ [ln (𝑥2 + 𝑒
1
𝑥 )]

2
est continue sur ℝ∗. En effet,

• 𝑥 ↦ 1
𝑥 est continue sur ℝ∗ à valeurs dans ℝ et 𝑥 ↦ 𝑒𝑥 est continue sur ℝ donc 𝑥 ↦ 𝑒

1
𝑥 est continue sur ℝ∗ ;

• 𝑥 ↦ 𝑥2 est continue sur ℝ donc sur ℝ∗ ; par somme 𝑥 ↦ 𝑥2 + 𝑒
1
𝑥 est continue sur ℝ∗ ;

• 𝑥2+𝑒
1
𝑥 est continue sur ℝ∗ à valeurs dans ℝ∗

+ et 𝑥 ↦ ln𝑥 est continue sur ℝ∗
+ donc 𝑥 ↦ ln (𝑥2 + 𝑒

1
𝑥 ) est continue

sur ℝ∗ ;

• enfin,𝑥 ↦ ln (𝑥2 + 𝑒
1
𝑥 ) est continue surℝ∗ à valeurs dansℝ et𝑥 ↦ 𝑥2 est continue surℝ donc𝑥 ↦ [ln (𝑥2 + 𝑒

1
𝑥 )]

2

est continue sur ℝ∗.

5.3 Théorèmes liés à la relation d’ordre sur ℝ
Les théorèmes suivant sont intrinsèquement liés à la relation d’ordre sur ℝ.

Théorème 5.1 Théorème des valeurs intermédiaires

Soit 𝑓 une fonction continue sur intervalle [𝑎, 𝑏]. Pour tout réel 𝑦 compris entre 𝑓(𝑎) et 𝑓(𝑏), il existe 𝑥 ∈ [𝑎, 𝑏] tel que
𝑦 = 𝑓(𝑥).
Si de plus, 𝑓 est strictement monotone sur [𝑎, 𝑏], ce réel 𝑥 est unique.

Remarque. Il est facile de montrer que l’on peut se ramener au cas où 𝑓(𝑎) < 0 et 𝑓(𝑏) > 0 et où l’on cherche un zéro de 𝑓.
On a déjà vu comme illustration des suites adjacentes comment déterminer deux suites adjacentes tendant vers un zéro d’une
fonction 𝑓 sur un intervalle [𝑎, 𝑏] quand 𝑓(𝑎) < 0 et 𝑓(𝑏) > 0. On avait supposé l’existence d’un zéro de 𝑓 en admettant le
TVI. Mais nous avions aussi prouvé en fait l’existence d’un zéro de 𝑓. Le TVI était déjà quasiment prouvé.

Remarque. On a une version du théorème des valeurs intermédiaires avec des limites. Si 𝑓 est continue sur ]𝑎, 𝑏[ (avec 𝑎 et
𝑏 éventuellement infinis) et si 𝑓 admet des limites (éventuellement infinies) ℓ1 et ℓ2 respectivement en 𝑎+ et 𝑏−, alors pour
tout réel 𝑦 strictement compris entre ℓ1 et ℓ2, il existe un réel 𝑥 ∈]𝑎, 𝑏[ tel que 𝑦 = 𝑓(𝑥).
A nouveau, si 𝑓 est strictement monotone sur ]𝑎, 𝑏[, alors ce réel 𝑥 est unique.

Exercice 5.1

Un cycliste parcourt 20km en une heure. Montrer qu’il existe un intervalle de temps d’une demie-heure pendant lequel il
parcourt exactement 10km.

Remarque. Il existe un corollaire utile du théorème des valeurs intermédiaires à savoir qu’une fonction continue sur un
intervalle et ne s’annulant pas sur cet intervalle est de signe constant sur cet intervalle.
Le fait que l’on considère un intervalle est primordial : en effet, la fonction 𝑥 ↦ 1

𝑥 est continue sur ℝ∗, ne s’annule pas sur ℝ∗

mais n’est évidemment pas de signe constant sur ℝ∗.

On a en fait une version plus «théorique» du TVI. Il fait intervenir la définition des intervalles de ℝ par convexité qui est
aussi intrinséquement liée à la relation d’ordre.
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Rappel Intervalles de ℝ

On appelle intervalle de ℝ toute partie I de ℝ vérifiant la propriété suivante :

∀(𝑥, 𝑦) ∈ I2, ∀𝑡 ∈ ℝ, 𝑥 ≤ 𝑡 ≤ 𝑦 ⇒ 𝑡 ∈ I

Corollaire 5.1 Image continue d’un intervalle

L’image d’un intervalle par une application continue est un intervalle.

Attention!� L’image d’un intervalle ouvert (resp. semi-ouvert) n’est pas forcément un intervalle ouvert (resp. semi-
ouvert). Par exemple, l’image de l’intervalle semi-ouvert [0, 2π[ par la fonction sin est l’intervalle fermé [−1, 1]. Nous
verrons cependant que l’image d’un intervalle fermé est un intervalle fermé.

On est maintenant à même de prouver une version complète du théorème de la bijection monotone.

Corollaire 5.2 Théorème de la bijection monotone

Soit 𝑓 une fonction continue et strictement monotone sur un intervalle I. Alors 𝑓 réalise une bijection de I sur l’intervalle
J = 𝑓(I). De plus, si I = [𝑎, 𝑏], on a

• si 𝑓 est croissante, 𝑓(I) = [𝑓(𝑎), 𝑓(𝑏)] ;

• si 𝑓 est décroissante, 𝑓(I) = [𝑓(𝑏), 𝑓(𝑎)].

On a des résultats analogues si I est un intervalle ouvert ou semi ouvert (𝑎 et 𝑏 pouvant être égaux respectivement à
−∞ et +∞) avec éventuellement des limites. Par exemple, si 𝑓 est une application continue et strictement croissante sur
I =]𝑎, 𝑏], 𝑓 réalise une bijection de I sur 𝑓(I) =] lim

𝑎+
𝑓, 𝑓(𝑏)].

Remarque. Dans le cas d’une application continue et strictement monotone, l’image d’un intervalle ouvert (resp. fermé,
semi-ouvert) est bien un intervalle ouvert (resp. fermé, semi-ouvert). Mais, j’insiste, si vous n’avez pas la stricte monotonie,
vous ne pouvez rien dire sur l’intervalle image (si ce n’est que c’est bien un intervalle).

Exemple 5.2

La fonction cos est continue et strictement décroissante sur [0, π]. Elle induit donc une bijection de [0, π] sur [−1, 1] de
bijection réciproque la fonction arccos∶ [−1, 1] → [0, π], qui est elle aussi continue et strictement décroissante.

Proposition 5.2 Continuité de la bijection réciproque

Soit 𝑓 une application continue et strictement monotone sur un intervalle I. On sait que 𝑓 induit une bijection réciproque
de I sur J = 𝑓(I). L’application réciproque 𝑓−1 ∶ J → I est une bijection continue et strictement monotone sur J de
même sens de variation que 𝑓.

Remarque. La notation 𝑓−1 est abusive. En effet, 𝑓 n’est pas bijective ; elle induit une bijection de I sur 𝑓(I).

Dans le théorème de la bijection monotone, on utilise le fait quasi-évident qu’une fonction strictement monotone est injec-
tive, qu’elle soit continue ou non. On a en fait une réciproque qui peut servir de temps à autre.
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Proposition 5.3

Soit une fonction continue et injective sur un intervalle I. Alors 𝑓 est strictement monotone sur I.

5.4 Théorèmes liés à la compacité

Définition 5.2 Segment

On appelle segment de ℝ tout intervalle non vide, fermé et borné i.e. tout intervalle du type [𝑎, 𝑏] avec (𝑎, 𝑏) ∈ ℝ2 et
𝑎 ≤ 𝑏.

Théorème 5.2 Théorème des bornes atteintes

Toute application continue sur un segment est bornée et atteint ses bornes.

Attention!� Il est essentiel que l’intervalle considéré soit un segment. Par exemple, 𝑥 ↦ 1
𝑥 est continue et minorée sur

ℝ∗
+ mais elle n’y atteint pas sa borne inférieure, à savoir 0. De même, cos est continue sur ]0, π[ mais elle n’atteint ni sa

borne inférieur i.e. −1, ni sa borne supérieure i.e. 1 sur cet intervalle.

On a là aussi une version plus «théorique» de ce résultat. On sait déjà que l’image d’un intervalle est un intervalle. Le
résultat suivant précise les choses quand l’intervalle est un segment.

Théorème 5.3 Image continue d’un segment

L’image d’un segment par une application continue est un segment.

Exercice 5.2 ★★★

Soit 𝑓 continue surℝ telle que 𝑓(𝑥) ⟶
𝑥→+∞

+∞ et 𝑓(𝑥) ⟶
𝑥→−∞

+∞. Montrer que 𝑓 est minorée et atteint sa borne inférieure.

6 Continuité uniforme

6.1 Définition

Définition 6.1 Continuité uniforme

Soit 𝑓∶ I → ℝ une application. On dit que 𝑓 est uniformément continue sur I si

∀ε ∈ ℝ∗
+, ∃α ∈ ℝ∗

+, ∀(𝑥, 𝑦) ∈ I2, |𝑥 − 𝑦| < α ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < ε

Remarque. La définition de la continuité uniforme sur I ressemble à s’y méprendre à la continuité simple sur I. Dire que 𝑓
est continue sur I veut dire que 𝑓 est continue en tout point 𝑦 de I, c’est-à-dire formellement :

∀𝑦 ∈ I, ∀ε > 0, ∃α > 0, ∀𝑥 ∈ I, |𝑥 − 𝑦| < α ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < ε

La place du ∀𝑦 ∈ I n’est pas la même dans la définition de la continuité sur I et dans la définition de la continuité uniforme sur
I et cela fait toute la différence.
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Dans la continuité simple, le α dépend de 𝑦 et de ε. Dans la continuité uniforme, le α ne dépend que de ε : si ε est fixé, le α
correspondant est valable pour tout 𝑦 ∈ I, d’où le terme «uniforme».

Remarque. On obtient une définition équivalente en remplaçant les inégalités strictes par des inégalités larges.

Proposition 6.1 Continuité uniforme implique continuité simple

Une application uniformément continue sur I est continue sur I.

Attention!� La réciproque est fausse. La fonction 𝑥 ↦ 𝑥2 est continue sur ℝ mais n’est pas uniformément continue sur
ℝ.

On a néanmoins une réciproque si I est un segment.

Théorème 6.1 Théorème de Heine

Toute fonction continue sur un segment est uniformément continue sur ce segment.

Remarque. Ce théorème essentiel, assez peu utilisé en première année, trouvera de nombreuses applications en deuxième
année.

Exercice 6.1

Montrer qu’une application continue sur ℝ et périodique est uniformément continue sur ℝ.

6.2 Fonctions lipschitziennes
Les fonctions uniformément continues par excellence sont les fonctions lipschitziennes.

Définition 6.2 Fonction lipschitzienne

Soient 𝑓∶ I → ℝ une application et K ∈ ℝ+. On dit que 𝑓 est lipschitzienne de rapport K ou plus simplement K-
lipschitzienne si :

∀(𝑥, 𝑦) ∈ I2, |𝑓(𝑥) − 𝑓(𝑦)| ≤ K|𝑥 − 𝑦|

Une application est dite lipschitzienne sur I si elle est K-lipschitzienne pour un certain K ∈ ℝ+.

Exemple 6.1

Toute fonction affine est lipschitzienne.

Proposition 6.2 Lipschitz implique uniforme continuité

Soit 𝑓∶ I → ℝ une application. Si 𝑓 est lipschitzienne sur I alors 𝑓 est uniformément continue sur I.

Attention!� Une nouvelle fois la réciproque est fausse. En effet, 𝑥 ↦ √𝑥 est uniformément continue sur ℝ+ mais n’est
pas lipschitzienne sur ℝ+.
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7 Limite et continuité des fonctions à valeurs complexes
On parle dans ce chapitre de fonctions de ℝ dans ℂ et non de fonctions de ℂ dans ℂ. Les seules différences avec le cas réel

viennent du fait qu’il n’y a plus de relation d’ordre sur ℂ.

7.1 Limite d’une fonction à valeurs complexes

Définition 7.1 Fonction bornée

Soit 𝑓∶ I → ℂ une application. On dit que 𝑓 est bornée (sur I), s’il existe K ∈ ℝ+ tel que

∀𝑥 ∈ I, |𝑓(𝑥)| ≤ K

Définition 7.2 Limite d’une fonction à valeurs complexes

Soit 𝑓∶ I → ℂ une fonction définie au voisinage de 𝑎 ∈ ℝ. Soit ℓ ∈ ℂ. On dit que 𝑓 admet pour limite ℓ en 𝑎 si
lim
𝑥→𝑎

|𝑓(𝑥) − ℓ| = 0. On note alors lim
𝑎
𝑓 = ℓ ou lim

𝑥→𝑎
𝑓(𝑥) = ℓ.

Exemple 7.1

lim
𝑥→+∞

𝑒𝑖𝑥

1 + 𝑥2 = 0.

Attention!� Une fonction à valeurs complexes ne tend jamais vers ±∞. Les notations +∞ et −∞ n’ont plus aucun sens
dansℂ. Au mieux, on peut dire que le module d’une fonction à valeurs dansℂ tend vers+∞. En effet, si 𝑓 est une fonction
à valeurs dans ℂ, |𝑓| est une fonction à valeurs dans ℝ (et même dans ℝ+).
Néanmoins le point 𝑎 en lequel on considère la limite peut très bien être égal à±∞.

Une fonction à valeurs complexes admettant une limite en un point est encore bornée au voisinage de ce point. La caracté-
risation séquentielle de la limite est encore valable.

Proposition 7.1

Soit 𝑓∶ I → ℂ une fonction définie au voisinage de 𝑎 ∈ ℝ. Soit ℓ ∈ ℂ.

lim
𝑎
𝑓 = ℓ ⟺ lim

𝑎
𝑓 = ℓ

Corollaire 7.1

Soit 𝑓∶ I → ℂ une fonction définie au voisinage de 𝑎 ∈ ℝ. Soit ℓ ∈ ℂ. Les propositions suivantes sont équivalentes :

(i) lim
𝑎
𝑓 = ℓ ;

(ii) lim
𝑎

Re(𝑓) = Re(ℓ) et lim
𝑎

Im(𝑓) = Im(ℓ).

Exemple 7.2

lim
𝑥→+∞

ln𝑥 + 𝑖𝑥
1 + 𝑥2 = 0.
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Les opérations algébriques sur les limites sont identiques dans le cas complexe à part celles faisant intervenir des limites
égales à ±∞ (encore une fois, ces symboles n’ont aucun sens dans ℂ). Les théorèmes de passage à la limite et d’existence de
limite vus dans ce chapitre n’ont plus de sens dans le cas complexe vu qu’ils font intervenir la relation d’ordre.

7.2 Continuité d’une fonction à valeurs complexes
Les définitions vus dans ce chapitre restent les mêmes dans le cas complexe notamment la définition de la continuité en un

point. La seule différence est que |.| désigne le module est non la valeur absolue.

Définition 7.3 Continuité d’une fonction à valeurs complexes

Soit 𝑓∶ I → ℂ une fonction définie au voisinage de 𝑎 ∈ ℝ et définie en 𝑎. On dit que 𝑓 est continue en 𝑎 si 𝑓 admet une
limite en 𝑎. Dans ce cas, lim

𝑎
𝑓 = 𝑓(𝑎). Donc 𝑓 est continue en 𝑎 si :

∀ε ∈ ℝ∗
+, ∃α ∈ ℝ∗

+, ∀𝑥 ∈ D𝑓, |𝑥 − 𝑎| < α ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < ε

Remarque. A nouveau, on obtient une définition équivalente en remplaçant les inégalités strictes par des inégalités larges.

L’ensemble des fonctions à valeurs complexes continues sur un intervalle I se note 𝒞0(I, ℂ) ou 𝒞(I, ℂ). La caractérisation
séquentielle de la continuité est encore valable.

Proposition 7.2

Soient 𝑓∶ I → ℂ et 𝑎 ∈ I.

(i) 𝑓 est continue en 𝑎 si et seulement si 𝑓 est continue en 𝑎.

(ii) 𝑓 est continue sur I si et seulement si 𝑓 est continue sur I.

Corollaire 7.2

Soient 𝑓∶ I → ℂ et 𝑎 ∈ I. Les propositions suivantes sont équivalentes :

(i) 𝑓 est continue en 𝑎 ;

(ii) Re(𝑓) et Im(𝑓) sont continues en 𝑎.

De même, les assertions :

(i) 𝑓 est continue sur I ;

(ii) Re(𝑓) et Im(𝑓) sont continues sur I.

Les opérations algébriques sur les fonctions continues sont identiques dans le cas complexe. Les théorèmes liés à la conti-
nuité sur un intervalle n’ont plus de sens car l’image d’un intervalle de ℝ n’est pas un intervalle de ℂ. Qu’est-ce un intervalle
de ℂ d’ailleurs ?

On peut néanmoins affirmer conserver le résultat affirmant qu’une fonction sur un segment est bornée.

Proposition 7.3

Toute fonction à valeurs complexes continue sur un segment est bornée.

Remarque. On peut même préciser qu’une telle fonction «atteint sa borne». En effet, si 𝑓 est continue sur un segment [𝑎, 𝑏],
|𝑓| est également continue sur ce segment et à valeurs réelles. En notantM = sup

[𝑎,𝑏]
|𝑓|, le théorème de continuité sur un segment

appliqué aux fonctions à valeurs réelles garantit qu’il existe 𝑐 ∈ [𝑎, 𝑏] tel que |𝑓(𝑐)| = M.
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