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M ATRICES

Dans tout ce chapitre, KK désigne les corps R ou C, p et n des entiers naturels non nuls.

1 Matrices a coefficients dans K

1.1 Définition

Définition 1.1 Matrice

On appelle matrice a coefficients dans K a n lignes et p colonnes ou matrice a coefficients dans K de taille n X p toute
famille d’éléments de K indexée sur [1, n]] X [1, p] i.e. toute famille d’éléments de K du type (a; j)1<i<n-
1<j<p

Notation 1.1

Une matrice de taille n X p est généralement représentée sous forme d’un tableau a n lignes et p colonnes (d’ou I’appel-
lation...) :

A1 Gz 0 Ay ot Gup
a2,1 a2’2 “ee aZ,j e az’p
i1 Qip - Qi ot GQip
(ny Qnz =t Qpj ** Qup

L’élément a; ; est donc placé sur la i®™ ligne et sur la j*™ colonne.

Définition 1.2 Ensembles de matrices

On note M, ,(I) I’ensemble des matrices a coefficients dans [ de taille n X p.

Lorsque n = p, cet ensemble est plus simplement noté M,,(IK). On parle alors de matrices carrées de taille n.
Lorsque p = 1, on parle de matrices colonnes de taille n.

Lorsque n = 1, on parle de matrices lignes de taille p.

REMARQUE. Les appellations «matrices carrées», «matrices colonnes» et «matrices lignes» proviennent bien évidemment
de la forme des tableaux représentant ces matrices dans lescasn = p, p=1etn = 1.

1.2 Structure de K-espace vectoriel

M, p(K) nest autre que KILIXILPI oy encore K"P. On définit donc la loi interne + et la loi interne . usuelles de sorte
qu’on a le résultat suivant.

Proposition 1.1 Structure de [K-espace vectoriel de M, ,(IK)

M, p(K) est un [K-espace vectoriel.
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REMARQUE. Le vecteur nul de M, ,(K) est la matrice nulle i.e. le tableau a n lignes et p colonnes rempli de zéros.

Définition 1.3 Base canonique de M, ,(K)

Pour (i, j) € [1,n] X [1, p]|, on note E; j la matrice de M, ,(I) dont tous les coefficients sont nuls & I’exception de celui

de la i*™ ligne et de la j*™ colonne qui vaut 1.

La famille (E; j)1<i<n est une base de M, ,(K) appelée base canonique de M, ().
1<j<p

La dimension de M, ,(I) est donc np.

1.3 Produit matriciel

On définit également une multiplication sur les matrices qui peut paraitre étrange au premier abord mais dont le sens
apparaitra lorsque nous identifierons matrices et applications linéaires.

Définition 1.4 Produit matriciel

Soient A = (a; j)1<i<n € My p(K) et B = (b; j)1<i<p € M) q(KK). On définit le produit AB comme la matrice C =
1<j<p 1<j<q
(¢, )1<i<n € My, (K) telle que :
1<j<q

p
V(i j) € [Lall x [1.q]l, cij =D aixb;
k=1
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’ B : p lignes g colonnes ‘

o By

C1,j C1,q

ey
ves @ .. @ Ci,l eee Ci,q
A1 - Quk e Qup Cn,1 e Cpk e Cng
A : nlignes p colonnes C = A X B:nlignes q colonnes

ATTENTION ! On ne multiplie que des matrices de taille compatible, c’est-a-dire que I’on multiplie une matrice a p colonnes
par une matrice a p lignes.

ATTENTION! Le produit matriciel n’est pas commutatif. En effet, si le produit AB est bien défini, le produit BA ne I’est
généralement pas pour des raisons de non compatibilité de taille. Quand bien méme il serait défini, on n’a généralement

11 00
pasBA;éAB.Ilsuﬁ'ltdeprendreAz(O 1)etB:(1 0).

Proposition 1.2 Propriétés du produit matriciel

* Le produit matriciel est bilinéaire

V(A ) € K2, Y(A, B) € M, 5(K)%, YC € M, 4(K), (AA + uB)C = AAC + uBC
V(A 1) € K2, VA € M, 5(K), ¥(B,C) € M, ,(K)%, A(AB + uC) = AAB + pAC

* Le produit matriciel est associatif

VA € M, 5(K), VB € M, 4(K), VC € M, (K), A(BC) = (AB)C
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Exercice 1.1

Soit (E; j)1<i, j<n la base canonique de M,,(K). Montrer que pour tout (i, j, k, [) € M,(K)*, E; jEx; = &; xEi .

1.4 Transposition

Définition 1.5 Transposée

Soit A = (a;,j)1<i<n € My, p(KK). On appelle transposée de A la matrice (g;;)1<i<p € Mp, ,(K), notée AT,
1<j<p 1<j<n

ReMARQUE. Concretement, I’opération de transposition échange les lignes et les colonnes des matrices.

REMARQUE. La transposée d’une matrice carrée est une matrice carrée de méme taille.

REMARQUE. Dans certains ouvrages, la tranposée d’une matrice A est également notée ‘A.

Proposition 1.3 Propriétés de la transposition

* La transposition est linéaire :

V(A w) € K2, V(A,B) € M, ,(K)%, (AA + uB)T = AAT + uBT

* La transposition est involutive :
VA € M, ,(K), (ADT = A

* Transposée d’un produit :
V(A,B) € M, p(K) X M, 4(K), (AB)T = BTAT

1.5 Matrices définies par blocs

— Matrices définies par blocs

Soient A € M, 4(K), B € M, 4(K), C € M, () et D € M, ,(K). On peut définir une matrice M € M, 1.p q4r(K) 2

I’aide de ces quatre matrices de la fagon suivante :
A|C
M =
B|D

Le produit de deux matrices définies par blocs s’effectue de la maniere suivante :

AC) E| G\ (AE+CF | AG+CH
B|D)\F|H/ \BE+DF|BG+DH

— Produit de matrices définies par blocs
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@ AtTENTION! Il faut bien évidemment que les différentes matrices soient de taille compatible :
* le nombre de colonnes de A et B doit étre le nombre de lignes de E et G;

* le nombre de colonnes de C et D doit étre le nombre de lignes de F et H.

. . [A]C . (AT | BT
REMARQUE. La transposée de la matrice est la matrice .
B|D cT| DT

2 Opérations élémentaires sur les lignes et les colonnes d’une matrice

2.1 Opérations élémentaires et pivot de Gauss

Définition 2.1 Opérations élémentaires

On appelle opérations élémentaires sur les colonnes d’une matrice les opérations suivantes :
* échange de deux colonnes, notée C; < C;;
» multiplication d’une colonne par un scalaire non nul a, notée C; < aC;;
* addition d’un multiple d’une colonne a une autre, notée C; < C; + aC;.
On définit de méme les opérations élémentaires sur les lignes :
* échange de deux lignes, notée L; « L;;

» multiplication d’une ligne par un scalaire non nul o, notée L; « aL;;

* addition d’un multiple d’une ligne a une autre, notée L; « L; + aL;.

REMARQUE. Un échange peut s’écrire a I’aide des autres opérations. En effet, I’échange C; < C;j peut s’écrire comme la
suite d’opérations C; « C; + Cj, Cj < C; — C;, C; < C; + Cj, Cj <« —C;. De méme pour les lignes.

Proposition 2.1

On peut échelonner une matrice en colonnes a 1’aide d’opérations élémentaires sur les colonnes.
On peut échelonner une matrice en lignes a I’aide d’opérations élémentaires sur les lignes.

WL N Pivot de Gauss

Le pivot de Gauss consiste a utiliser des opérations élémentaires sur les lignes ou les colonnes d’une matrice pour se
ramener a une forme échelonnée en lignes ou en colonnes.
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2.2 Interprétation matricielle

Proposition 2.2 Matrices élémentaires
Soitn € N*. Pour i, j € [1,n] avec i # jeta € K, on pose :
Pj=Eij+E;+1,—E;—E; Di() =1, + (¢ — 1)E;; T j(@) =1, + aB;j

Pour une matrice de M, ,(K) :

* l'opération C; <> C; correspond a la multiplication a droite par B, ;;

* T’opération C; < aC; correspond a la multiplication a droite par D;(c);

* I'opération C; < Cj + aC; correspond & la multiplication a droite par T; j(c0).
Pour une matrice de M, ,(K) :

* l'opération L; <> L; correspond a la multiplication a gauche par P, ;;

* T’opération L; < oL; correspond a la multiplication & gauche par D;(a);

* l'opération L; < L; + al,; correspond a la multiplication a gauche par T; j(c).

Ces matrices sont appelées des matrices élémentaires.

C; Cj
1

1 G G

L; 0 1

1 1 1
1 1 L; 1«
L] 1 0 Ll (04
1 1 1
1 1 1
Matrice de transposition P, Matrice de dilatation Dy(«) ~ Matrice de transvection T; j(a)

REMARQUE. Les B, ; sont des matrices de permutation ou plus exactement de transposition.

Les D;(ar) sont des matrices de dilatation.

Les T; j(o) sont des matrices de transvection.

Une matrice de transposition peut s’écrire comme un produit de matrices de dilatation et de transvection.

REMARQUE. Ce qu’il faut surtout retenir, c’est que les opérations sur les colonnes correspondent a des multiplications a
droite et les opérations sur les lignes a des multiplications a gauche.

3 L’anneau M, (K)

3.1 Structure d’anneau de M, (KK)

Notation 3.1

On appelle matrice identité de taille  la matrice carrée de taille n dont les coefficients diagonaux sont égaux a 1 et les
autres nuls.
On adonc I,, = (; j)1<i,j<n OU §;,j est le symbole de Kronecker qui vaut 1 si i = j, 0 sinon.
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Proposition 3.1 Structure d’anneau de M, (K)

(M,(K), +, X) est un anneau. L’ élément neutre pour la multiplication est la matrice identité I,,.
Pour n > 1, I’anneau M ,,(IK) est non commutatif et non intégre.

REMARQUE. M ,(K) est méme une K-algebre : c’est a la fois un K-espace vectoriel et un anneau et pour A € K et
(A,B) € M,(K)?, (A.A)B = A(A.B) = L.(AB).

Exemple 3.1

01 10
SoitA:(0 0>etB=<0 0).AlorsAB=0maisA;éOetB;é0.

REMARQUE. Comme dans tout anneau, une matrice A est dite nilpotente s’il existe n € N* tel que A" = 0. Par exemple,
011

A=]0 0 1 |estnilpotente.
000

Exercice 3.1

Montrer que le centre de M, (K) est vect(I,,).

\Y 210N Calcul de puissances a I’aide d’un polynéme annulateur

Soient A € M,(K) et P € K[X] tel que P(A) = 0. En notant R,, le reste de la division euclidienne de X" par P,
A" = R,(A).

Exercice 3.2

1
Soit A = ( 5 4 ) Trouver un polyndme P de degré 2 tel que P(A) = 0. En déduire A" pour tout n € N.

\Y 210y Calcul de puissances a I’aide de la formule du binome

M, (IK) étant un anneau, la formule du bindme est vraie pour deux matrices carrées qui commutent.

Exercice 3.3

(a b
Soit A =

. ) Calculer A" pour tout n € N.
a

Exercice 3.4

123
SoitA=| 0 1 2 |. Calculer A" pour tout n € N.
001
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3.2 Matrices particuliéres de M, ()

3.2.1 Matrices triangulaires

Définition 3.1 Matrices triangulaires inférieures et supérieures

On appelle matrice triangulaire supérieure (resp. inférieure) toute matrice carrée dont tous les coefficients situés au-
dessous (resp. au-dessus) de la diagonale sont nuls.

On notera 7, (K) (resp. 7, (IK)) I’ensemble des matrices triangulaires supérieures (resp. inférieures) de taille n a coefi-
cients dans K.

REMARQUE. Soit T = (; j)1<i, j<n-
* T est triangulaire supérieure si et seulement si ¢; j = 0 pour i > j.

* T est triangulaire inférieure si et seulement si t; ; = 0 pour i < j.

REMARQUE. Une matrice est dite triangulaire supérieure (resp. inférieure) stricte si elle est triangulaire supérieure (resp.
inférieure) et si ses coefficients diagonaux sont nuls.
Soit T = (ti,j)lsi,err

* T est triangulaire supérieure stricte si et seulement si ¢; ; = 0 pouri > j.

* T est triangulaire inférieure stricte si et seulement si ¢; ; = 0 pouri < j.

Proposition 3.2
n(n+1)
2

De plus, les coefficients diagonaux d’un produit de matrices triangulaires supérieures (resp. inférieures) sont les produits
des coefficients diagonaux de ces matrices.

I (K) et J;7(K) sont des sous-espaces vectoriels de dimension et des sous-anneaux de M, (KK).

REMARQUE. La transposition sur M, () induit une involution linéaire (et donc un isomorphisme) de 7, (KK) sur 7, (K).

3.2.2 Matrices diagonales

Définition 3.2 Matrices diagonales

On appelle matrice diagonale toute matrice carrée dont tous les coefficients non diagonaux sont nuls.

Soit (ay, ..., a,) € K" On note diag(a, ..., a,) la matrice diagonale de taille n dont les coefficients diagonaux sont
Oy eee s Oy

L’ensemble des matrices diagonales de taille n a coefficients dans K sera noté D,,(K).

REMARQUE. D,(K) = 1 (K) N J;7(K).

Proposition 3.3
D, (K) est un sous-espace vectoriel de dimension n et un sous-anneau de M, ().

De plus, les coefficients diagonaux d’un produit de matrices diagonales sont les produits des coefficients diagonaux de
ces matrices.
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3.2.3 Matrices diagonales par blocs et triangulaires par blocs

Définition 3.3 Matrices triangulaires par blocs

On dit qu’une matrice carrée A est triangulaire supérieure par blocs il existe une famille de matrices (A; j)1<i<j<r de
tailles «adéquates» telle que

Al A o Ay
0 A :
A= . 252)
. Ar—1,r
0 - 0 A,
On dit qu’une matrice carrée A est triangulaire inférieure par blocs s’il existe une famille de matrices (A; j)1<j<i<r de
tailles «adéquates» telle que

A, O 0
A A :
A= 2,1 2,2 .
2 % . 0
App o Ar,r—l Ar,r

5

Définition 3.4 Matrices diagonales par blocs

On dit qu’une matrice carrée A est diagonale par blocs s’il existe des matrices carrées Ay, ..., A, telles que

AL 0 - 0
0 A :
A= 2 :
. 0
0 0 A,

3.2.4 Matrices symétriques et antisymétriques

Définition 3.5 Matrice symétrique ou antisymétrique

Soit A € M,,(K).
* On dit que A est symétrique si AT = A.

« On dit que A est antisymétrique si AT = —A.

On notera 8,,(K) (resp. A, (K)) I’ensemble des matrices symétriques (resp. antisymétriques) de M, (K).

REMARQUE. La dénomination «symétrique» ou «antisymétrique» provient de la symétrie des coefficients par rapport a
la diagonale.

* A est symétrique si et seulement si A;; = A; j pour (i, j) € [1, n]>.
* A est antisymétrique si et seulement si A;; = —A; j pour (i, j) € [[1, n]]z.

La diagonale d’une matrice antisymétrique est nulle.
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@ ATTENTION ! Le produit de deux matrices symétriques (resp. antisymétriques) n’est pas forcément une matrice symétrique
(resp. antisymétrique).

Proposition 3.4

. . . . . . n(n+1)
8,(K) et A,(K) sont des sous-espaces vectoriels supplémentaires de M, (IK) de dimensions respectives 5 et
n(n—1)
—

Exercice 3.5

Montrer que la transposition dans M, (K) est la symétrie par rapport a S, () parallelement a A, (K).

3.3 Matrices inversibles

RETNIN Inversibilité

Linversibilité des matrices est & comprendre dans le sens de I’inversibilité dans un anneau. Soit A € M,,(K). A est donc
inversible s’il existe B € M,,(K) telle que AB = BA =1,,.

@ ATTENTION ! L'inversibilité n’a de sens que pour les matrices carrées !

REMARQUE. On verra plus tard qu’il est suffisant d’avoir seulement AB = I,, ou BA = I, pour affirmer que A est
inversible d’inverse B.

Définition 3.6 Groupe linéaire

On appelle groupe linéaire de degré n sur KK, noté GL,(K), le groupe des éléments inversibles de M, (K).

Proposition 3.5 Propriétés de I’inversion

Inversibilité et produit Soit (A, B) € GL,,(K)?. Alors AB € GL,,(K) et (AB)™! = B71A™L,
Involution Soit A € GL,,(K). Alors A~! est inversible et (A‘l)_1 =A.

Inversibilité et puissance Soit A € GL,(K). Pour tout k € N, A¥ est inversible et (A")_1 = (A_l)k (on note AF).

Inversibilité et transposée Soit A € M, (K). Alors A € GL,(K) si et seulement si AT € GL,(K). Dans ce cas,
(AT)—I - (A—I)T.

WYY Calcul de Pinverse a I’aide d’un polynéme annulateur

Pour déterminer I’inverse d’une matrice A, on peut déterminer un polyndme annulateur de A i.e. un polynéme P tel que
P(A) = 0. On peut alors déterminer A~! sous la forme d’un polyndéme en A.

http://1lgarcin.github.io 10


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

Exercice 3.6

Soit
1 0 2
A=]10-11
1 -20

1. Calculer A3 — A.

2. En déduire que A est inversible puis déterminer A~!.

Proposition 3.6 Inversibilité et inverse des matrices triangulaires
Une matrice triangulaire supérieure (resp. inférieure) T est inversible si et seulement si ses coefficients diagonaux sont

non nuls. Dans ce cas, T~! est triangulaire supérieure (resp. inférieure) et ses coefficients diagonaux sont les inverses des
coefficients diagonaux de T.

Proposition 3.7 Inversibilité et inverse des matrices diagonales

Une matrice diagonale D est inversible si et seulement si ses coefficients diagonaux sont non nuls. Dans ce cas, D! est
diagonale et ses coeflicients diagonaux sont les inverses des coefficients diagonaux de D.

Exemple 3.2

1
Les matrices de permutation, de dilatation et de transvection sont inversibles : Pi’_j1 =B, Di()~! = D; <a) (sia #0)
et Ti’j(O()_l = i,j(_a)'

Proposition 3.8

Toute matrice inversible peut étre transformée en la matrice identité a I’aide d’opérations sur les colonnes uniquement ou
a I’aide d’opérations sur les lignes uniquement.
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VY210 Calcul de ’inverse par la méthode de Gauss-Jordan

1 0 2
Supposons que I’on ait a inverser la matrice A = 1 -1 2 | Onécrit I; a droite de A et on effectue les mémes
0 2 -1

opérations élémentaires sur les lignes de A et I; de maniere a transformer A en I5. La suite d’opérations sur les lignes de
A correspondra A une multiplication 4 gauche par A~! : I; sera donc transformé en A~1,

On annule dans la premiere colonne.

—
o
[\
—
(=)

Lz «— L2 - Ll

o
|
—_
|
—_
—_

Puis dans la deuxieme ligne.

1 0 1 0
0 -1 0 -1 L3 «— L3 + 2L2
0 0o -1 -2 2
On met des 1 sur la diagonale.
2 1
0 0 L, « -,
0 1 0 1 -1 0 Ly « -Ls
0 0 2 =2 -1

1 0 0 -3 4
0 1 0 -1 L « L;—-2L3
0 0 1 2 -2 -1
-3 4 2
OnadoncA™ = 1 _; ¢
2 -2 -1

On aurait également pu placer I3 au-dessous de A et effectuer des opérations élémentaires sur les colonnes.

REMARQUE. Si jamais la matrice donnée n’est pas inversible, la méthode précédente donnera une ligne ou une colonne
nulle, ce qui montre la non inversibilité.

ATTENTION ! Dans la méthode de Gauss-Jordan, on effectue des opérations sur les lignes ou sur les colonnes. Jamais sur

les deux en méme temps !
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— Explication de la méthode de Gauss-Jordan

Soit A € GL,(K).

Supposons qu’on pivote uniquement sur les lignes d’une matrice A. La transformation de 1la matrice A en la matrice I,, se
traduit par I’existence de matrices élémentaires Gy, ... Gy telles que G ... G;A = I,,. On adonc Gy ... G; = A~L. Comme
on effectue les mémes opérations sur I,,, celle-ci est transformée en Gy ... GyI,, = A~L.

Supposons qu’on pivote uniquement sur les colonnes d’une matrice A. La transformation de la matrice A en la matrice
I,, se traduit par ’existence de matrices élémentaires Gy, ... Gy telles que AG; ... G; = I,,. On a donc G4 ... G, = A™L.
Comme on effectue les mémes opérations sur I,,, celle-ci est transformée en I,,G; ... G = AL,

REMARQUE. L’algorithme du pivot de Gauss permet de montrer que toute matrice de GL,(K) peut s’écrire comme un
produit de matrices de dilatation et de transvection. On dit que ces matrices engendrent le groupe GL,,(IK).

Exercice 3.7

Déterminer I’inverse de la matrice :
123 n

012 - n-—1
001 - n-—-2

000 - 1

Exercice 3.8 Matrices diagonales par blocs

AlO
Soient A € M, (K) et B € M, (). Montrer que la matrice M = (04.>B) est inversible si et seulement si A et B le sont

et déterminer M~! dans ce cas.
Etendre ce résultat a une matrice diagonale par blocs.

Exercice 3.9 Matrices triangulaires par blocs

A|C
Soient A € M,(K), B € M,(K) et C € M, ,(KK). Montrer que la matrice M = (0—‘?) est inversible si et seulement

si A et B le sont.
Etendre ce résultat & une matrice triangulaire par blocs.

3.4 Trace

Définition 3.7 Trace

Pour A € M, (K), on appelle trace de A, notée tr(A), la somme des coefficients diagonaux de A.

Proposition 3.9 Propriétés de la trace

(i) La trace est une forme linéaire sur M, ().
(i) Pour tout A € M,,(K), tr(AT) = tr(A).
(iii) Pour tout (A, B) € M, p(IK) X M, ,(K), tr(AB) = tr(BA).
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@ AtTENTION! Si (A, B, C) € M, (K)3, on peut affirmer que d’une part tr(ABC) = tr(CAB) = tr(BCA) et, d’autre part que
tr(CBA) = tr(ACB) = tr(BAC). Mais en général

tr(ABC) = tr(CAB) = tr(BCA) # tr(CBA) = tr(ACB) = tr(BAC)

4 Représentation matricielle des vecteurs et des applications linéaires

4.1 Matrices et vecteurs

Définition 4.1 Matrice d’un vecteur dans une base

Soient E un K-espace vectoriel de dimension n > 1, B = (ey, ..., e,) une base de E et x € E. On appelle matrice de x
dans la base B la matrice colonne de taille n, notée matg(x), formée des coordonnées de x dans la base B :

er(x)
matg (X) =
en(x)
Exemple 4.1
1
La matrice de (1, —2,4, —3) dans la base canonique de R* est
-3

Exemple 4.2
=5
q 3 ) 9 =2
La matrice de 4X> + 3X= — 2X — 5 dans la base canonique de R;[X] est
4

Proposition 4.1

I n,l(K)

— matg(x) est un

E
Soient E un K-espace vectoriel de dimension n > 1 et B une base de E. L’application { X

isomorphisme.

REMARQUE. En particulier, si on considére la base canonique de K", on peut associer a une matrice colonne de taille n
un unique vecteur de K".
On identifiera souvent les matrices colonnes de M, ;(I) aux vecteurs de K".
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Définition 4.2 Matrice d’une famille de vecteurs dans une base

Soient E un K-espace vectoriel de dimension n > 1, B = (ey, ..., €,) une base de E et &' = (fj, ..., f,) une famille de
vecteurs de E. On appelle matrice de F dans la base B la matrice de taille n X p, notée mat 5 (F), formée des coordonnées
des vecteurs de F dans la base B :

mats(7) = €l (Pisicn

Exemple 4.3
1 0-2 4
La matrice de la famille ((1,2, —3),(0,1,2),(=2,1,3), (4,5, —1)) dans la base canonique de R3est| 2 1 1 5
-32 3 -1
Exemple 4.4
-1 -3 =5
; : 3 %2 2 3 2 ; 0 -2
La matrice de la famille (—X° + X*—1, 2X*—3,4X° 4+ 3X* —2X — 5) dans la base canonique de R;[X] est 3
-1 0 4

Proposition 4.2 Matrices et bases

Soient E un K-espace vectoriel de dimension n > 1, B = (ey, ..., e,) une base de E et F = (f;, ..., f,,) une famille de
vecteurs de E. Alors F est une base de E si et seulement si matg(F) est inversible.

4.2 Matrices et applications linéaires

Définition 4.3 Matrice d’une application linéaire dans des bases

Soient E et F deux K-espaces vectoriels de dimensions respectives p et n. Soient B, = (ey, ..., €p) et By = (fi, ..., f)
des bases respectives de E et F. Soit enfin u € L(E, F). On appelle matrice de u dans les bases B, et B, la matrice de
taillen X p:

matg, 3,(u) = matg, (u(ey), ..., u(ep))

u(e;) u(ep)
Ay Aip A
An,l An,p fn
n n
DAL DAk
i=1 i=1
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Exemple 4.5

Soit f: R3 — R2
ot ¢ x,y,z) — (xX+y—2z,2x—y+3z2)
B, les bases canoniques respectives de R3 et R2. Alors f(1,0,0) = (1,2), f(0,1,0) = (1,—1) et £(0,0,1) = (-1,3)

done matg, 5, () =( - T
onc ma = 5
B2 2 -1 3

. On vérifie que f est bien une application linéaire. Notons B; et

Exemple 4.6

RyX] — Rs[X]
P — X*P® 4+P(2)+P(-X)
les bases canoniques respectives de R,[X] et Rs[X]. Alors T(1) = 2, T(X) = 2—X, T(X?) = X2+4, T(X3) = 6X*-X3+8

Soit T : { . On vérifie que T est bien une application linéaire. Notons B, et B;

2 2 4 8 16
0-10 0 O
0O 01 0 O
et T(X*) = 24X° + X* + 16 donc mat (T) =
S 00 0-10
0 0 0 6 1
0 0 0 0 24

Proposition 4.3

Soient E et F deux K-espaces vectoriels de dimensions respectives p et n. Soient By = (ey, ..., €,) et By = (fi, ..., fn)
L(E,F) — Mn,p(lK)

est un isomorphisme.
u +—— matg, g, (u)

des bases respectives de E et F. L’application {

Corollaire 4.1

Soient E et F deux espaces vectoriels de dimension finie. Alors dim £(E,F) = dimE X dim F.

Définition 4.4

Soit A € M, ,(K). On appelle application linéaire canoniquement associée a A I’'unique application f € L(IKP, K")
dont la matrice dans les bases canoniques de KP et K" est A.

REMARQUE. Quitte a identifier matrices colonnes et vecteurs, 1’application linéaire canoniquement associée a A est
KPP — K"
X — AX

Exemple 4.7

2 =314
L application linéaire canoniquement associée a la matrice ( ) est
-1 0 2

K — K2
(x%,y,2) — (x—3y+4z,—x+22)
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Proposition 4.4 Interprétation matricielle de I’image d’un vecteur

Soient E et F deux K-espaces vectoriels de dimension finie. Soient B, et B, des bases respectives de E et F. Soient x € E,
y € Fetu € L(E,F). On pose X = matg, (x), Y = matg, (y) et U = matg, g, (u). Alors

y=ulx) & Y=UX

Exemple 4.8
. 3 2 . 11 1 N . . 3 2 .
Soit u € £L(R>, R*) de matrice U = 5 1 ol Bj; et B, sont les bases canoniques respectives de R> et R*. Soit
! 0
x = (1,2,3) € R3. La matrice de x dans B; est X = | 2 |. Puisque UX = ( 9 ), u(x) = (0,9).
3

Proposition 4.5 Interprétation matricielle d’'une composée d’applications linéaires

Soient E, F et G trois [K-espaces vectoriels de dimension finie. Soient B, B,, B; des bases respectives de E, F, G. Soient
u € L(E,F) etv € L(F, G). Alors

mat31’33 (U o u) = mat32’33 (U) matBl,Bz (u)

REMARQUE. Ces deux dernieres propositions nous disent tout simplement que toute 1’ algebre linéaire en dimension finie
peut étre interprété en termes de matrices.

Proposition 4.6

Soient E et F deux K-espaces vectoriels de méme dimension de bases respectives B; et B,. Soit u € L(E, F). Alors u
est bijective si et seulement si matg, 5,(u) est inversible, et dans ce cas :

-1 _
(matg, 5,(u)) = matg, 5 (u™)

Matrices de Vandermonde

Soit (xg, ... , X,) € K"*1. On pose M = (x{ Jo<i,j<n- M est inversible si et seulement si les x; sont distincts entre eux deux
Kn [X] N Kn+1

dans les bases canoniques de
P (P(xp):....P(xn)) d

a deux car M est la matrice de I’application linéaire {

I, [X] et KL,

4.3 Matrices et endomorphismes

Dans le cas des endomorphismes, on utilise souvent la méme base de départ et d’arrivée pour la représentation matri-
cielle.

Définition 4.5 Matrice d’un endomorphisme dans une base

Soient E un K-espace vectoriel de dimension n, B une base de E et u € £L(E). On appelle matrice de u dans la base B la
matrice carrée de taille n :
matg(u) = matg 5(u)
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u(ey) u(en)
Ay "' Ayp €
An 1 An,n en

Exemple 4.9 Matrice de I’identité

Soit E un espace vectoriel de dimension n € N*, La matrice de Idg dans toute base de E est I,,.

Exemple 4.10 Matrice d’un projecteur

La matrice d’un projecteur p d’un espace vectoriel de dimension finie E dans une base adaptée a la décomposition en

I 0
somme directe E = Im p @ Ker p est ( o W ) avec ¢ = dimIm p et r = dim Ker p.

rq Oq

Exemple 4.11 Matrice d’une symétrie

La matrice d’une symétrie s d’un espace vectoriel de dimension finie E dans une base adaptée a la décomposition en

I 0
somme directe E = Ker(s — Idg) @ Ker(s + Idg) est ( 0 A e ) avec q = dim Ker(s — Idg) et r = dim Ker(s + Idg).

r,q —r

Exemple 4.12 Sous-espace stable

Soit u un endomorphisme d’un espace vectoriel de dimnension finie E. Soient F et G deux sous-espaces vectoriels de E
supplémentaires dans E. On note B une base adaptée a la décomposition en somme directe E = F @ G.

A|C
Si F est stable par u, la matrice de u dans B est de la forme (—‘?) ou A et B sont des matrices carrées de tailles
0

respectives dim F et dim G. Plus précisément, A est la matrice de I’endomorphisme induit par u sur F dans la base de F
extraite de B.

A|lO
Si F et G sont stables par u, la matrice de u dans B est de la forme (T‘?) ou A et B sont a nouveau des matrices carrées

de tailles respectives dim F et dim G. Plus précisément, A et B sont respectivement les matrices des endomorphismes
induits par u sur F et G dans les bases de F et G extraites de B.

Proposition 4.7

{L(E) — M®)

Soient E un K-espace vectoriel de dimension n et B une base de E. L’application
— matg(u)

isomorphisme d’anneaux.
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REMARQUE. Comme précédemment, on peut associer a toute matrice de M, (K) un unique endomorphisme de K".

Exercice 4.1

Montrer qu’une matrice triangulaire stricte est nilpotente a 1’aide de I’endomorphisme qui lui est canoniquement associé.

Proposition 4.8

GL(E) — GL,(K)

est un isomorphisme
u +— matg(u)

Soit E un K-espace vectoriel de dimension n et de base B. L’ application {

de groupes.

Corollaire 4.2

Soit E un K-espace vectoriel de dimension n et de base B. Soit u € L(E). Alors u est un automorphisme si et seulement
si matz(u) est inversible et, dans ce cas, matg(u~!) = matg (u)_l.

Exercice 4.2

R,[X] — R,[X]

P — P(X+1)+P(X) est un automorphisme de R,[X].

Montrer que 1’application {

Exercice 4.3

Onpose A = ((i)) en convenant que (i) = Opouri > j. Enremarquant que A est la matrice d’un endomorphisme
0<i,j<n

de K,,[X], montrer que A est inversible et déterminer son inverse.

Corollaire 4.3

Soit (A, B) € M,(K)2. Si AB = I,,, alors A et B sont inversibles et inverses I’une de 1’ autre.

REMARQUE. En toute généralité, on devrait prouver que AB = I,, et BA = I,,. La proposition précédente nous dit donc,
que dans le cadre de ’anneau M, (K), il suffit de vérifier I’'une des deux conditions.

Exercice 4.4

Soient A et B dans M,(C) telles que
AB=1,+A+ A%

Montrer que AB = BA.

\Y (1 LY Inversibilité et inversion d’une matrice

Pour déterminer I’inversibilité d’une matrice A € M, (K) et calculer A~! le cas échéant, on écrit le systtme Y = AX avec
X = (X1, %) €t Y = (1, ...,y,) " 0l les inconnues sont Xy, ..., X,,. Si le systéme admet une solution, elle est du type
X = A7Y ce qui permet d’identifier A=1.

http://1lgarcin.github.io 19


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

4.4 Matrices et formes linéaires

Définition 4.6 Matrice d’une forme linéaire dans une base

Soient E un [K-espace vectoriel de dimension p et B = (ey, ... , €,) une base de E. Soit enfin ¢ € E*. On appelle matrice
de ¢ dans la base B la matrice ligne de taille p :

matg(u) = matg(@(er), ... , plep))

REMARQUE. En particulier, si on considére la base canonique de KP, on peut associer a toute matrice ligne de taille p
une unique forme linéaire sur KP?.
On identifiera souvent les matrices lignes de Mlyp([K) aux formes linéaires sur KP.

Définition 4.7 Matrice d’une famille de formes linéaires dans une base

Soient E un K-espace vectoriel de dimension p > 1, B = (ey, ... ,ep) une base de E et F = (¢, ..., ¢,,) une famille de
formes linéaires sur E. On appelle matrice de F dans la base B la matrice de taille n X p, notée matg(F) :

mat5(F) = (@i(¢)1<in
1<j<p

S Noyau, image et rang d’une matrice

5.1 Noyau et image

Définition 5.1

Pour A € M, ,(I), on pose :

Ker A = {X € M,,(K) | AX = 0} ImA = {AX, X € M,,(K)}

Mp,l(K) — Mn,l(K)
X — AX

le noyau et I'image de cette application linéaire. Ker A et Im A sont donc des sous-espaces vectoriels respectifs de M, ; (I€)

et M, 1 (K.

REMARQUE. L’application { est une application linéaire. Ker A et Im A sont respectivement

REMARQUE. Quitte & identifier les matrices colonnes de taille p et n aux vecteurs de KP et K", on peut dire que Ker A et
Im A sont les noyau et image de 1’application linéaire canoniquement associée a A.

Proposition 5.1

Soit A € M, ,(I). Im A est le sous-espace vectoriel de M, ; (IK) engendré par les colonnes de A.

WY1 Calcul du noyau et de ’image

Pour déterminer le noyau d’une matrice A € M, ,(I), il suffit de résoudre le systéme correspondant a I’équation AX = 0.
L’image d’une matrice A est le sous-espace vectoriel engendré par les vecteurs colonnes de A.
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Proposition 5.2 Lien entre noyau, image d’une application linéaire et de sa matrice

Soient B, et B, des bases respectives de deux K-espaces vectoriels E et F de dimension n et p. Soient u € L(E,F) et
A= matgl,gz (Ll)

L’ application E M1 (1) induit un isomorphisme de Ker u sur Ker A.
x +— matg, (x)

L’ application F Mra () induit un isomorphisme de Im u sur Im A.
X +— matg,(x)

ReEMARQUE. Comme pour les applications linéaires, on a des résultats classiques d’inclusions de noyau et d’image pour
les matrices :

e Ker(B) C Ker(AB);
* Im(AB) C Im(A);

e AB=0 < ImB C KerA.

\YE1 01 Calcul d’une base du noyau et de I’'image d’une application linéaire grace a sa matrice

Soit u une application linéaire de matrice A dans deux bases. On sait déterminer une base de Ker A et Im A. Les isomor-
phismes précédents nous permettent d’en déduire une base de Ker u et Im u.

Exemple 5.1

Ri;[X] — Rs[X]
P — PX+1)+PX-1)—-2PX) °

Déterminer le noyau et I’'image de I’application {

Proposition 5.3 Noyau et inversibilité

Soit A € M,,(KK). Alors A est inversible si et seulement si Ker A = {0}.

Proposition 5.4

Les opérations élémentaires sur les colonnes d’une matrice laissent son image inchangée.
Les opérations élémentaires sur les lignes d’une matrice laissent son noyau inchangg.
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WY1 Y Déterminer le noyau et I’'image d’une matrice en méme temps!

2 1
Supposons que 1’on veuille déterminer le noyau et I'image de A = 2 1 —1 |- On écrit A puis on ajoute
2 1
au-dessous une matrice identité.
2 1
2 -1
2 1
0
0

Puis on pivote sur les colonnes.

1 0 0
2 -3 -3
L0 0 e « ¢-2
C, « C-C
-2 -1
0
0

Encore une fois pour avoir la derniére colonne nulle.

0
2 -3
0 0
C3 «— C3 - C2
-2 1
-1
0 1
1 0 1
On a alors ImA = vect|{| 2 |,] =3 |]|et KerA = vect|| —1
1 0 1

ATTENTION! Pour appliquer cette méthode, on pivote uniquement sur les colonnes.
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5.2 Rang

Définition 5.2 Rang d’une matrice

Soit A une matrice. On pose rg(A) = dim Im A.

REMARQUE. Le rang d’une matrice est également le rang de la famille de ses vecteurs colonnes.

REMARQUE. Si A € M, ,(K), alors rg(A) < min(n, p).

REMARQUE. On verra plus tard que rg(A) = rg(AT). Le rang d’une matrice est aussi le rang des vecteurs lignes de A.

Proposition 5.5 Rang d’une famille de vecteurs et de sa matrice

Soient B une base d’un K-espace vectoriel E de dimension finie et  une famille vecteurs de E. Alors rg ¥ = rg(mat g (F)).

Proposition 5.6 Rang d’une application linéaire et de sa matrice

Soient B, et B, des bases respectives de deux K-espaces vectoriels E et F de dimension finie. Soit u € £L(E, F). Alors
rgu = rg(matg, 5, (1)).

Proposition 5.7 Rang d’un endomorphisme et de sa matrice

Soient B une base d’un K-espace vectoriel E de dimension finie. Soit u € L(E). Alors rgu = rg(matg(u)).

Corollaire 5.1 Théoreme du rang matriciel

Soit A € M, ,(K). Alors p = rg(A) + dim Ker(A).

Corollaire 5.2 Rang et inversibilité

Soit A € M, (K). A est inversible si et seulement si rg A = n.

- N
Lemme 5.1

Soient a € K*, A € M, ,(K), C € M, 1(K) et L € M, p(K). Alors

oa | L al| 0 L +reA
T =T = T
& 0| A g C| A &
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WY ULy Calcul du rang

apparaissant au cours des opérations de pivot.

—-45 =27
—67 —335 —201

2+rg(

( 1 5 3
2+r1g

67 —335 =201
2+r1g (

=3

)
B

153
000

On utilise le pivot de Gauss (sur les lignes ou les colonnes) pour annuler des coefficients sur la premiére ligne et le
lemme précédent pour se ramener a une matrice de taille inférieure. On supprime également les lignes ou colonnes nulles

1 3 2 3 1 1 3 2 3 1
311 2 2 08 7115 | < Lt3
rg =rg Ly « L;+1;
-1 20 4 3 01 2 7 4|71,  ,+20L
—-20 -5 3 —-10 -1 0 55 43 50 19
8 7 11 5
=l+4rg|l 1 2 7 4
55 43 50 19
1 2 7 4
=1+4+rg| 8 7 11 5 | L; « L,
55 43 50 19
1 2 7 4
_ L2 «— L2_8L1
=1l+rg| 0 -9 —-45 =27 L, « L;—55L,
0 —67 —335 =201

)L2 — Ly+67L,

1
—§L1

temps.

Proposition 5.8 Invariance du rang par multiplication par une matrice inversible
Soit A € M, ,(K).

* Si B € GL,,(K), alors rg(BA) = rg(A).

* Si B € GL,(K), alors rg(AB) = rg(A).
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6 Changements de bases, équivalence et similitude

6.1 Changement de base

Définition 6.1 Matrice de passage

Soient B et B’ deux bases d’un espace yectoriel E de dimension finie. On appelle matrice de passage de la base B a la
base B’ la matrice matg(3B’), notée PZ? .

Proposition 6.1

-1
Soient B et B’ deux bases d’un espace vectoriel E de dimension finie. Alors Pf " est inversible et (Pf ') = Pg,.

REMARQUE. On peut remarquer que P2 "= matg 5(Idg).

Proposition 6.2 Changement de base pour les vecteurs
Soit B et B’ deux bases d’un espace vectoriel E de dimension finie. Soit x € E. On pose X = matg(x), X' = matg, (x)

etP =P2". Alors X = PX.

ArTENTION ! La formule de changement de base est bien X = PX’ et non X’ = PX.

Proposition 6.3 Changement de base pour les applications linéaires
Soit E un K-espace vectoriel de dimension finie de bases € et £'. Soit également F un K-espace vectoriel de dimension

finie de bases F et F'. Soit enfin u € L(E, F). On note P = Pge,, Q= P;,, A = matg #(u) et A’ = matgs 5 (u). Alors
A = Q7lAP.

Proposition 6.4 Changement de base pour les endomorphismes

Soit E un K-espace vectoriel de dimension finie de bases € et &'. Soit u € L(E). On note P = Pge,, A = matg(u) et
A’ = matg (u). Alors A’ = P71AP.

\Y (1 LG Y Se souvenir des formules de changement de base

Soientu € L(E), x € E, y = u(x) € E et B, B’ deux bases de E. Notons respectivement A, X, Y les matrices de u, x, y
dans la base B et A, X', Y’ les matrices de u, x, y dans la base B’. Notons enfin P la matrice de passage de B vers B’. On
aY=AX,X=PX etY =PY. OnendéduitY = P~'APX. Or Y’ = A’X' donc A’ = P~'AP.

Proposition 6.5 Changement de base pour les formes linéaires

Soit E un K-espace vectoriel de dimension finie de bases &€ et £'. Soit ¢ € E*. On note P = PSS,, L = matg(o) et
L' = matg (¢). Alors L' = LP.
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6.2 Matrices équivalentes et rang

Définition 6.2 Matrices équivalentes

Soient A et A’ deux matrices de M, ,(IK). On dit que A’ est équivalente a A si et seulement si il existe P € GL,(K) et
Q € GL,(K) telle que A’ = Q~!AP.

Proposition 6.6

La relation «étre équivalente a» est une relation d’équivalence.

REMARQUE. On pourra alors dire sans ambiguité que deux matrices sont équivalentes plutdt que de dire que 1’une est
équivalente a 1’autre.

Exercice 6.1

Montrer que si A et B sont deux matrices équivalentes, il en est de méme de AT et BT.

Proposition 6.7

Deux matrices sont équivalentes si et seulement si elles représentent la méme application linéaire dans deux couples de
bases.

Notation 6.1

Lorsque I’on travaille dans M, ,(I), pour 0 < r < min(n, p), on note J,, , , la matrice suivante :

( L | Oy )
On—r,r On—r,p—r

Il est clair que la matrice J, , , est de rang 7.

Proposition 6.8

Soient E et F deux K-espaces vectoriels de dimensions finies respectives p et n et u € L(E, F). Alors u est de rang r si
et seulement si il existe des bases B et B de E et F telles que matg g/ (u) = I, p -

Corollaire 6.1 Caractérisation du rang

Soit M € M, p(IK). Alors M est de rang r si et seulement si M est équivalente a J, p, ;.
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Exercice 6.2

Soient A = et r = rg A. Déterminer U € GL4(R) et V € GLs(R) telles que UAV =

1,

Corollaire 6.2

Deux matrices ont méme rang si et seulement si elles sont équivalentes.

Proposition 6.9 Invariance du rang par transposition

Soit A € M, ,(K). Alors rg AT =rgA.

Corollaire 6.3

Le rang d’une matrice est égal au rang de la famille de ses vecteurs lignes.

Définition 6.3 Matrice extraite

Soit A = (a;,j)1<i<n une matrice de M, ,(I). On appelle matrice extraite de A toute matrice de la forme (a;,j)(;, j)erxs
155

<j<p
oulcC[1,n]etd C[1,p].

REMARQUE. Plus prosaiquement, une matrice extraite est une matrice obtenue en conservant certaines ou toutes les lignes
ou colonnes de la matrice initiale ou, de maniere équivalente, en supprimant éventuellement certaines lignes ou colonnes
de la matrice initiale.

Exemple 6.1

1 2 3 4 5
1 3 4
) ) ) . 6 7 8 9 10 )
Lamatrice| 11 13 14 |estune matrice extraite de la matrice . On a en effet conservé les colonnes
13 TR G 11 12 13 14 15

16 17 18 19 20

1, 3,4 etles lignes 1, 3, 4.

Proposition 6.10

Le rang d’une matrice extraite est inférieur au rang de la matrice dont elle est extraite.

Corollaire 6.4

Le rang d’une matrice est égale a la taille de la plus grande matrice carrée inversible que 1’on peut extraire de cette matrice.
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6.3 Matrices semblables et trace

Définition 6.4 Matrices semblables

Soient A et B deux matrices de M, (I). On dit que B est semblable a A si et seulement si il existe P € GL,,(KK) telle que
B =P !AP.

Exemple 6.2

La seule matrice semblable a la matrice identité est la matrice identité elle-méme.
La seule matrice semblable a la matrice nulle est la matrice nulle.

Proposition 6.11

La relation de similitude («étre semblable a») est une relation d’équivalence.

REMARQUE. On pourra alors dire sans ambiguité que deux matrices sont semblables plutdot que de dire que 1’une est
semblable a I’autre.

‘ REMARQUE. Deux matrices semblables sont équivalentes. La réciproque est fausse.
‘ REMARQUE. Sideux matrices sont semblables, 1’une est inversible si et seulement si I’autre 1’est.

REMARQUE. Si A et B sont semblables, alors A" et B" sont semblables pour tout n € N (pour tout n € Z si A est
inversible).

Plus précisément, s’il existe une matrice inversible P telle que B = P~1AP, alors B” = P~'A"P pour tout n € N (pour
tout n € Z si A est inversible).

Exercice 6.3

Soit A = ( ) Montrer que A est semblable a une matrice diagonale. En déduire A” pour tout n € N.

Proposition 6.12

Deux matrices sont semblables si et seulement si elles représentent le méme endomorphisme dans deux bases.

Proposition 6.13

Deux matrices semblables ont la méme trace.

@ ‘ ATTENTION! La réciproque est fausse. Deux matrices de méme trace ne sont méme pas nécessairement équivalentes.
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Définition 6.5 Trace d’un endomorphisme

Soit u un endomorphisme d’un espace vectoriel E de dimension finie. Alors la trace de matg(u) est indépendante de la
base choisie. On 1’appelle la trace de I’endomorphisme u et on la note tr(u).

Exemple 6.3 Trace d’un projecteur

La trace d’un projecteur est égale a son rang.

Proposition 6.14 Propriétés de la trace

Soit E un espace vectoriel de dimension finie. Soient u et v deux endomorphismes d’un méme K-espace vectoriel de
dimension finie.

(i) La trace est une forme linéaire sur £(E).

(ii) Pour tout (u, v) € L(E)?, tr(u o v) = tr(v o u).

7 Systemes linéaires

— Interprétation matricielle d’un systeme linéaire

Un systeéme linéaire (S) de n équations a p inconnues peut toujours se mettre sous la forme AX = B avec A € M, ,(K)
B € M, 1(K) et ou X € M), 1 (KK) est I'inconnue. B est alors appelé le second membre de ce systéme d’équations.
Le systeme linéaire homogene ou sans second membre associé a S est le systéme AX = 0.

REMARQUE. Résoudre un systéme linéaire, c’est également rechercher les coefficients des combinaisons linéaires des
vecteurs colonnes de A égales a B.

Sion note ¢y, ..., ¢, les formes lin€aires canoniquement associées aux lignes de A, ¢’est également rechercher les vecteurs
x € K" tels que @;(x) = b;pour 1 <i < n.

C’est également déterminer I’intersection des hyperplans affines d’équations ¢;(x) = b.

Définition 7.1

Le rang du systéme linéaire AX = B est le rang de A.
Un systéme linéaire est dit compatible s’il admet au moins une solution.

Proposition 7.1 Structure de I’ensemble des solutions

L'ensemble des solutions du systtme AX = 0 o A € M, ,(IK) est Ker A. C’est un sous-espace vectoriel de Mp, ;(KK) de
dimension n — rg(A).

Le systtme AX = B ol A € M, ,(K) et B € M, ;(I) n’a de solution que si B € Im A. Dans ce cas, ’ensemble des
solutions est le sous-espace affine X, + Ker A ou X, est une solution particuliere.
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WY Uy Résolution d’un systeme linéaire

La résolution d’un systéme linéaire peut se faire de la maniere suivante.
* On forme une nouvelle matrice C = (A|B) en placant B a droite de A.

* On effectue un pivot de Gauss sur les lignes de C de maniére a se ramener a une matrice C' = (A’|B’). Les solutions
de AX = B sont les solutions de A’X = B’. La résolution du second systeme est plus simple car A’ est sous forme
triangulaire.

Définition 7.2 Systéme de Cramer

On dit que le systtme AX = B est de Cramer si A est inversible (en particulier n = p).

Proposition 7.2
Le systtme AX = B possede une unique solution si et seulement si A est inversible. Dans ce cas, cette unique solution

est A71B.

REMARQUE. En pratique, on ne calcule jamais A~! pour obtenir la solution. On triangularise le syst¢éme avec la méthode
décrite précédemment.

Exercice 7.1

Résoudre le systeme d’équations suivant d’inconnues complexes :

X, + Xy + X3 + + Xn = 1
X1 + 2x, + 2x3 + + 2x, =1
X7 + 2x, + 3x3 + + 3x, =1
xX; + 2%, + 3x3 + .. + nx, =1
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