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Matrices

Dans tout ce chapitre, 𝕂 désigne les corps ℝ ou ℂ, 𝑝 et 𝑛 des entiers naturels non nuls.

1 Matrices à coefficients dans 𝕂

1.1 Définition

Définition 1.1 Matrice

On appelle matrice à coefficients dans 𝕂 à 𝑛 lignes et 𝑝 colonnes ou matrice à coefficients dans 𝕂 de taille 𝑛×𝑝 toute
famille d’éléments de 𝕂 indexée sur ⟦1, 𝑛⟧ × ⟦1, 𝑝⟧ i.e. toute famille d’éléments de 𝕂 du type (𝑎𝑖,𝑗)1≤𝑖≤𝑛

1≤𝑗≤𝑝
.

Notation 1.1

Une matrice de taille 𝑛 × 𝑝 est généralement représentée sous forme d’un tableau à 𝑛 lignes et 𝑝 colonnes (d’où l’appel-
lation...) :

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑗 ⋯ 𝑎1,𝑝
𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑗 ⋯ 𝑎2,𝑝
⋮ ⋮ ⋮ ⋮
𝑎𝑖,1 𝑎𝑖,2 ⋯ 𝑎𝑖,𝑗 ⋯ 𝑎𝑖,𝑝
⋮ ⋮ ⋮ ⋮
𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑗 ⋯ 𝑎𝑛,𝑝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

L’élément 𝑎𝑖,𝑗 est donc placé sur la 𝑖ème ligne et sur la 𝑗ème colonne.

Définition 1.2 Ensembles de matrices

On note ℳ𝑛,𝑝(𝕂) l’ensemble des matrices à coefficients dans 𝕂 de taille 𝑛 × 𝑝.
Lorsque 𝑛 = 𝑝, cet ensemble est plus simplement noté ℳ𝑛(𝕂). On parle alors de matrices carrées de taille 𝑛.
Lorsque 𝑝 = 1, on parle de matrices colonnes de taille 𝑛.
Lorsque 𝑛 = 1, on parle de matrices lignes de taille 𝑝.

Remarque. Les appellations «matrices carrées», «matrices colonnes» et «matrices lignes» proviennent bien évidemment
de la forme des tableaux représentant ces matrices dans les cas 𝑛 = 𝑝, 𝑝 = 1 et 𝑛 = 1.

1.2 Structure de 𝕂-espace vectoriel

ℳ𝑛,𝑝(𝕂) n’est autre que 𝕂⟦1,𝑛⟧×⟦1,𝑝⟧ ou encore 𝕂𝑛𝑝. On définit donc la loi interne + et la loi interne . usuelles de sorte
qu’on a le résultat suivant.

Proposition 1.1 Structure de 𝕂-espace vectoriel de ℳ𝑛,𝑝(𝕂)

ℳ𝑛,𝑝(𝕂) est un 𝕂-espace vectoriel.
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Remarque. Le vecteur nul de ℳ𝑛,𝑝(𝕂) est la matrice nulle i.e. le tableau à 𝑛 lignes et 𝑝 colonnes rempli de zéros.

Définition 1.3 Base canonique de ℳ𝑛,𝑝(𝕂)

Pour (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧×⟦1, 𝑝⟧, on note E𝑖,𝑗 la matrice de ℳ𝑛,𝑝(𝕂) dont tous les coefficients sont nuls à l’exception de celui
de la 𝑖ème ligne et de la 𝑗ème colonne qui vaut 1.
La famille (E𝑖,𝑗)1≤𝑖≤𝑛

1≤𝑗≤𝑝
est une base de ℳ𝑛,𝑝(𝕂) appelée base canonique de ℳ𝑛,𝑝(𝕂).

La dimension de ℳ𝑛,𝑝(𝕂) est donc 𝑛𝑝.

1.3 Produit matriciel
On définit également une multiplication sur les matrices qui peut paraître étrange au premier abord mais dont le sens

apparaîtra lorsque nous identifierons matrices et applications linéaires.

Définition 1.4 Produit matriciel

Soient A = (𝑎𝑖,𝑗)1≤𝑖≤𝑛
1≤𝑗≤𝑝

∈ ℳ𝑛,𝑝(𝕂) et B = (𝑏𝑖,𝑗)1≤𝑖≤𝑝
1≤𝑗≤𝑞

∈ ℳ𝑝,𝑞(𝕂). On définit le produit AB comme la matrice C =

(𝑐𝑖,𝑗)1≤𝑖≤𝑛
1≤𝑗≤𝑞

∈ ℳ𝑛,𝑞(𝕂) telle que :

∀(𝑖, 𝑗) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑞⟧ , 𝑐𝑖,𝑗 =
𝑝
∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗
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𝑎1,1 … 𝑎1,𝑘 … 𝑎1,𝑝

⋮ ⋱ ⋮ ⋮ ⋮

𝑎𝑖,1 … 𝑎𝑖,𝑘 … 𝑎𝑖,𝑝

⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛,1 … 𝑎𝑛,𝑘 … 𝑎𝑛,𝑝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A : 𝑛 lignes 𝑝 colonnes

𝑏1,1 … 𝑏1,𝑗 … 𝑏1,𝑞

⋮ ⋱ ⋮ ⋮ ⋮

𝑏𝑘,1 … 𝑏𝑘,𝑗 … 𝑏𝑘,𝑞

⋮ ⋮ ⋮ ⋱ ⋮

𝑏𝑝,1 … 𝑏𝑝,𝑗 … 𝑏𝑝,𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B : 𝑝 lignes 𝑞 colonnes

𝑐1,1 … 𝑐1,𝑗 … 𝑐1,𝑞

⋮ ⋱ ⋮ ⋮ ⋮

𝑐𝑖,1 … 𝑐𝑖,𝑗 … 𝑐𝑖,𝑞

⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑛,1 … 𝑐𝑛,𝑘 … 𝑐𝑛,𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C = A × B : 𝑛 lignes 𝑞 colonnes

𝑎 𝑖,1
×
𝑏 1,𝑗

𝑎 𝑖,𝑘
×
𝑏 𝑘,𝑗

𝑎 𝑖,𝑝
×
𝑏 𝑝,𝑗

+…
+

+…
+

Attention!� On ne multiplie que des matrices de taille compatible, c’est-à-dire que l’on multiplie une matrice à𝑝 colonnes
par une matrice à 𝑝 lignes.

Attention!� Le produit matriciel n’est pas commutatif. En effet, si le produit AB est bien défini, le produit BA ne l’est
généralement pas pour des raisons de non compatibilité de taille. Quand bien même il serait défini, on n’a généralement

pas BA ≠ AB. Il suffit de prendre A = (
1 1
0 1

) et B = (
0 0
1 0

).

Proposition 1.2 Propriétés du produit matriciel

• Le produit matriciel est bilinéaire

∀(λ, μ) ∈ 𝕂2, ∀(A, B) ∈ ℳ𝑛,𝑝(𝕂)2, ∀C ∈ ℳ𝑝,𝑞(𝕂), (λA + μB)C = λAC + μBC
∀(λ, μ) ∈ 𝕂2, ∀A ∈ ℳ𝑛,𝑝(𝕂), ∀(B, C) ∈ ℳ𝑝,𝑞(𝕂)2, A(λB + μC) = λAB + μAC

• Le produit matriciel est associatif

∀A ∈ ℳ𝑛,𝑝(𝕂), ∀B ∈ ℳ𝑝,𝑞(𝕂), ∀C ∈ ℳ𝑞,𝑟(𝕂), A(BC) = (AB)C
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Exercice 1.1

Soit (E𝑖,𝑗)1≤𝑖,𝑗≤𝑛 la base canonique de ℳ𝑛(𝕂). Montrer que pour tout (𝑖, 𝑗, 𝑘, 𝑙) ∈ ℳ𝑛(𝕂)4, E𝑖,𝑗E𝑘,𝑙 = δ𝑗,𝑘E𝑖,𝑙.

1.4 Transposition

Définition 1.5 Transposée

Soit A = (𝑎𝑖,𝑗)1≤𝑖≤𝑛
1≤𝑗≤𝑝

∈ ℳ𝑛,𝑝(𝕂). On appelle transposée de A la matrice (𝑎𝑗,𝑖)1≤𝑖≤𝑝
1≤𝑗≤𝑛

∈ ℳ𝑝,𝑛(𝕂), notée A⊤.

Remarque. Concrètement, l’opération de transposition échange les lignes et les colonnes des matrices.

Remarque. La transposée d’une matrice carrée est une matrice carrée de même taille.

Remarque. Dans certains ouvrages, la tranposée d’une matrice A est également notée 𝑡A.

Proposition 1.3 Propriétés de la transposition

• La transposition est linéaire :

∀(λ, μ) ∈ 𝕂2, ∀(A, B) ∈ ℳ𝑛,𝑝(𝕂)2, (λA + μB)⊤ = λA⊤ + μB⊤

• La transposition est involutive :
∀A ∈ ℳ𝑛,𝑝(𝕂), (A⊤)⊤ = A

• Transposée d’un produit :
∀(A, B) ∈ ℳ𝑛,𝑝(𝕂) ×ℳ𝑝,𝑞(𝕂), (AB)⊤ = B⊤A⊤

1.5 Matrices définies par blocs

Matrices définies par blocs

Soient A ∈ ℳ𝑛,𝑞(𝕂), B ∈ ℳ𝑝,𝑞(𝕂), C ∈ ℳ𝑛,𝑟(𝕂) et D ∈ ℳ𝑝,𝑟(𝕂). On peut définir une matrice M ∈ ℳ𝑛+𝑝,𝑞+𝑟(𝕂) à
l’aide de ces quatre matrices de la façon suivante :

M = (
A C
B D

)

Produit de matrices définies par blocs

Le produit de deux matrices définies par blocs s’effectue de la manière suivante :

(
A C
B D

)(
E G
F H

) = (
AE + CF AG + CH
BE + DF BG + DH

)
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Attention!� Il faut bien évidemment que les différentes matrices soient de taille compatible :

• le nombre de colonnes de A et B doit être le nombre de lignes de E et G ;

• le nombre de colonnes de C et D doit être le nombre de lignes de F et H.

Remarque. La transposée de la matrice (
A C
B D

) est la matrice (
A⊤ B⊤

C⊤ D⊤ ).

2 Opérations élémentaires sur les lignes et les colonnes d’une matrice

2.1 Opérations élémentaires et pivot de Gauss

Définition 2.1 Opérations élémentaires

On appelle opérations élémentaires sur les colonnes d’une matrice les opérations suivantes :

• échange de deux colonnes, notée C𝑖 ↔ C𝑗 ;

• multiplication d’une colonne par un scalaire non nul α, notée C𝑖 ← αC𝑖 ;

• addition d’un multiple d’une colonne à une autre, notée C𝑖 ← C𝑖 + αC𝑗.

On définit de même les opérations élémentaires sur les lignes :

• échange de deux lignes, notée L𝑖 ↔ L𝑗 ;

• multiplication d’une ligne par un scalaire non nul α, notée L𝑖 ← αL𝑖 ;

• addition d’un multiple d’une ligne à une autre, notée L𝑖 ← L𝑖 + αL𝑗.

Remarque. Un échange peut s’écrire à l’aide des autres opérations. En effet, l’échange C𝑖 ↔ C𝑗 peut s’écrire comme la
suite d’opérations C𝑖 ← C𝑖 + C𝑗, C𝑗 ← C𝑗 − C𝑖, C𝑖 ← C𝑖 + C𝑗, C𝑗 ← −C𝑗. De même pour les lignes.

Proposition 2.1

On peut échelonner une matrice en colonnes à l’aide d’opérations élémentaires sur les colonnes.
On peut échelonner une matrice en lignes à l’aide d’opérations élémentaires sur les lignes.

Méthode Pivot de Gauss

Le pivot de Gauss consiste à utiliser des opérations élémentaires sur les lignes ou les colonnes d’une matrice pour se
ramener à une forme échelonnée en lignes ou en colonnes.
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2.2 Interprétation matricielle

Proposition 2.2 Matrices élémentaires

Soit 𝑛 ∈ ℕ∗. Pour 𝑖, 𝑗 ∈ ⟦1, 𝑛⟧ avec 𝑖 ≠ 𝑗 et α ∈ 𝕂, on pose :

P𝑖,𝑗 = E𝑖,𝑗 + E𝑗,𝑖 + I𝑛 − E𝑖,𝑖 − E𝑗,𝑗 D𝑖(α) = I𝑛 + (α − 1)E𝑖,𝑖 T𝑖,𝑗(α) = I𝑛 + αE𝑖,𝑗

Pour une matrice de ℳ𝑝,𝑛(𝕂) :

• l’opération C𝑖 ↔ C𝑗 correspond à la multiplication à droite par P𝑖,𝑗 ;

• l’opération C𝑖 ← αC𝑖 correspond à la multiplication à droite par D𝑖(α) ;

• l’opération C𝑗 ← C𝑗 + αC𝑖 correspond à la multiplication à droite par T𝑖,𝑗(α).

Pour une matrice de ℳ𝑛,𝑝(𝕂) :

• l’opération L𝑖 ↔ L𝑗 correspond à la multiplication à gauche par P𝑖,𝑗 ;

• l’opération L𝑖 ← αL𝑖 correspond à la multiplication à gauche par D𝑖(α) ;

• l’opération L𝑖 ← L𝑖 + αL𝑗 correspond à la multiplication à gauche par T𝑖,𝑗(α).

Ces matrices sont appelées des matrices élémentaires.

1
⋱

1
0 1

1
⋱

1
1 0

1
⋱

1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

L𝑖

L𝑗

C𝑖 C𝑗

1
⋱

1
α

1
⋱

1

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

L𝑖

C𝑖

1
⋱

1 α
⋱

1
⋱

1

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

L𝑖

C𝑗

Matrice de transposition P𝑖,𝑗 Matrice de dilatation D𝑖(α) Matrice de transvection T𝑖,𝑗(α)

Remarque. Les P𝑖,𝑗 sont des matrices de permutation ou plus exactement de transposition.
Les D𝑖(α) sont des matrices de dilatation.
Les T𝑖,𝑗(α) sont des matrices de transvection.
Une matrice de transposition peut s’écrire comme un produit de matrices de dilatation et de transvection.

Remarque. Ce qu’il faut surtout retenir, c’est que les opérations sur les colonnes correspondent à des multiplications à
droite et les opérations sur les lignes à des multiplications à gauche.

3 L’anneau ℳ𝑛(𝕂)

3.1 Structure d’anneau de ℳ𝑛(𝕂)

Notation 3.1

On appelle matrice identité de taille 𝑛 la matrice carrée de taille 𝑛 dont les coefficients diagonaux sont égaux à 1 et les
autres nuls.
On a donc I𝑛 = (δ𝑖,𝑗)1≤𝑖,𝑗≤𝑛 où δ𝑖,𝑗 est le symbole de Kronecker qui vaut 1 si 𝑖 = 𝑗, 0 sinon.
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Proposition 3.1 Structure d’anneau de ℳ𝑛(𝕂)

(ℳ𝑛(𝕂), +, ×) est un anneau. L’élément neutre pour la multiplication est la matrice identité I𝑛.
Pour 𝑛 > 1, l’anneau ℳ𝑛(𝕂) est non commutatif et non intègre.

Remarque. ℳ𝑛(𝕂) est même une 𝕂-algèbre : c’est à la fois un 𝕂-espace vectoriel et un anneau et pour λ ∈ 𝕂 et
(A, B) ∈ ℳ𝑛(𝕂)2, (λ.A)B = A(λ.B) = λ.(AB).

Exemple 3.1

Soit A = (
0 1
0 0

) et B = (
1 0
0 0

). Alors AB = 0 mais A ≠ 0 et B ≠ 0.

Remarque. Comme dans tout anneau, une matrice A est dite nilpotente s’il existe 𝑛 ∈ ℕ∗ tel que A𝑛 = 0. Par exemple,

A =
⎛
⎜
⎜
⎝

0 1 1
0 0 1
0 0 0

⎞
⎟
⎟
⎠

est nilpotente.

Exercice 3.1

Montrer que le centre de ℳ𝑛(𝕂) est vect(I𝑛).

Méthode Calcul de puissances à l’aide d’un polynôme annulateur

Soient A ∈ ℳ𝑛(𝕂) et P ∈ 𝕂[X] tel que P(A) = 0. En notant R𝑛 le reste de la division euclidienne de X𝑛 par P,
A𝑛 = R𝑛(A).

Exercice 3.2

Soit A = (
1 −1
2 4

). Trouver un polynôme P de degré 2 tel que P(A) = 0. En déduire A𝑛 pour tout 𝑛 ∈ ℕ.

Méthode Calcul de puissances à l’aide de la formule du binôme

ℳ𝑛(𝕂) étant un anneau, la formule du binôme est vraie pour deux matrices carrées qui commutent.

Exercice 3.3

Soit A = (
𝑎 𝑏
𝑏 𝑎

). Calculer A𝑛 pour tout 𝑛 ∈ ℕ.

Exercice 3.4

Soit A =
⎛
⎜
⎜
⎝

1 2 3
0 1 2
0 0 1

⎞
⎟
⎟
⎠

. Calculer A𝑛 pour tout 𝑛 ∈ ℕ.
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3.2 Matrices particulières de ℳ𝑛(𝕂)

3.2.1 Matrices triangulaires

Définition 3.1 Matrices triangulaires inférieures et supérieures

On appelle matrice triangulaire supérieure (resp. inférieure) toute matrice carrée dont tous les coefficients situés au-
dessous (resp. au-dessus) de la diagonale sont nuls.
On notera 𝒯+

𝑛 (𝕂) (resp. 𝒯−
𝑛 (𝕂)) l’ensemble des matrices triangulaires supérieures (resp. inférieures) de taille 𝑛 à coeffi-

cients dans 𝕂.

Remarque. Soit T = (𝑡𝑖,𝑗)1≤𝑖,𝑗≤𝑛.

• T est triangulaire supérieure si et seulement si 𝑡𝑖,𝑗 = 0 pour 𝑖 > 𝑗.

• T est triangulaire inférieure si et seulement si 𝑡𝑖,𝑗 = 0 pour 𝑖 < 𝑗.

Remarque. Une matrice est dite triangulaire supérieure (resp. inférieure) stricte si elle est triangulaire supérieure (resp.
inférieure) et si ses coefficients diagonaux sont nuls.
Soit T = (𝑡𝑖,𝑗)1≤𝑖,𝑗≤𝑛.

• T est triangulaire supérieure stricte si et seulement si 𝑡𝑖,𝑗 = 0 pour 𝑖 ≥ 𝑗.

• T est triangulaire inférieure stricte si et seulement si 𝑡𝑖,𝑗 = 0 pour 𝑖 ≤ 𝑗.

Proposition 3.2

𝒯+
𝑛 (𝕂) et 𝒯−

𝑛 (𝕂) sont des sous-espaces vectoriels de dimension 𝑛(𝑛 + 1)
2 et des sous-anneaux de ℳ𝑛(𝕂).

De plus, les coefficients diagonaux d’un produit de matrices triangulaires supérieures (resp. inférieures) sont les produits
des coefficients diagonaux de ces matrices.

Remarque. La transposition surℳ𝑛(𝕂) induit une involution linéaire (et donc un isomorphisme) de𝒯+
𝑛 (𝕂) sur𝒯−

𝑛 (𝕂).

3.2.2 Matrices diagonales

Définition 3.2 Matrices diagonales

On appelle matrice diagonale toute matrice carrée dont tous les coefficients non diagonaux sont nuls.
Soit (α1,… , α𝑛) ∈ 𝕂𝑛. On note diag(α1,… , α𝑛) la matrice diagonale de taille 𝑛 dont les coefficients diagonaux sont
α1,… , α𝑛.
L’ensemble des matrices diagonales de taille 𝑛 à coefficients dans 𝕂 sera noté 𝒟𝑛(𝕂).

Remarque. 𝒟𝑛(𝕂) = 𝒯+
𝑛 (𝕂) ∩ 𝒯−

𝑛 (𝕂).

Proposition 3.3

𝒟𝑛(𝕂) est un sous-espace vectoriel de dimension 𝑛 et un sous-anneau de ℳ𝑛(𝕂).
De plus, les coefficients diagonaux d’un produit de matrices diagonales sont les produits des coefficients diagonaux de
ces matrices.
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3.2.3 Matrices diagonales par blocs et triangulaires par blocs

Définition 3.3 Matrices triangulaires par blocs

On dit qu’une matrice carrée A est triangulaire supérieure par blocs s’il existe une famille de matrices (A𝑖,𝑗)1≤𝑖≤𝑗≤𝑟 de
tailles «adéquates» telle que

A =

⎛
⎜
⎜
⎜
⎝

A1,1 A1,2 ⋯ A1,𝑟

0 A2,2 ⋮
⋮ ⋱ ⋱ A𝑟−1,𝑟

0 ⋯ 0 A𝑟,𝑟

⎞
⎟
⎟
⎟
⎠

On dit qu’une matrice carrée A est triangulaire inférieure par blocs s’il existe une famille de matrices (A𝑖,𝑗)1≤𝑗≤𝑖≤𝑟 de
tailles «adéquates» telle que

A =

⎛
⎜
⎜
⎜
⎝

A1,1 0 ⋯ 0
A2,1 A2,2 ⋱ ⋮
⋮ ⋱ ⋱ 0
A𝑟,1 ⋯ A𝑟,𝑟−1 A𝑟,𝑟

⎞
⎟
⎟
⎟
⎠

Définition 3.4 Matrices diagonales par blocs

On dit qu’une matrice carrée A est diagonale par blocs s’il existe des matrices carrées A1,… ,A𝑟 telles que

A =

⎛
⎜
⎜
⎜
⎝

A1 0 ⋯ 0
0 A2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 A𝑟

⎞
⎟
⎟
⎟
⎠

3.2.4 Matrices symétriques et antisymétriques

Définition 3.5 Matrice symétrique ou antisymétrique

Soit A ∈ ℳ𝑛(𝕂).

• On dit que A est symétrique si A⊤ = A.

• On dit que A est antisymétrique si A⊤ = −A.

On notera 𝒮𝑛(𝕂) (resp. 𝒜𝑛(𝕂)) l’ensemble des matrices symétriques (resp. antisymétriques) de ℳ𝑛(𝕂).

Remarque. La dénomination «symétrique» ou «antisymétrique» provient de la symétrie des coefficients par rapport à
la diagonale.

• A est symétrique si et seulement si A𝑗,𝑖 = A𝑖,𝑗 pour (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2.

• A est antisymétrique si et seulement si A𝑗,𝑖 = −A𝑖,𝑗 pour (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2.

La diagonale d’une matrice antisymétrique est nulle.
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Attention!� Le produit de deux matrices symétriques (resp. antisymétriques) n’est pas forcément une matrice symétrique
(resp. antisymétrique).

Proposition 3.4

𝒮𝑛(𝕂) et 𝒜𝑛(𝕂) sont des sous-espaces vectoriels supplémentaires de ℳ𝑛(𝕂) de dimensions respectives 𝑛(𝑛 + 1)
2 et

𝑛(𝑛 − 1)
2 .

Exercice 3.5

Montrer que la transposition dans ℳ𝑛(𝕂) est la symétrie par rapport à 𝒮𝑛(𝕂) parallèlement à 𝒜𝑛(𝕂).

3.3 Matrices inversibles

Rappel Inversibilité

L’inversibilité des matrices est à comprendre dans le sens de l’inversibilité dans un anneau. Soit A ∈ 𝕄𝑛(𝕂). A est donc
inversible s’il existe B ∈ 𝕄𝑛(𝕂) telle que AB = BA = I𝑛.

Attention!� L’inversibilité n’a de sens que pour les matrices carrées !

Remarque. On verra plus tard qu’il est suffisant d’avoir seulement AB = I𝑛 ou BA = I𝑛 pour affirmer que A est
inversible d’inverse B.

Définition 3.6 Groupe linéaire

On appelle groupe linéaire de degré 𝑛 sur 𝕂, noté GL𝑛(𝕂), le groupe des éléments inversibles de ℳ𝑛(𝕂).

Proposition 3.5 Propriétés de l’inversion

Inversibilité et produit Soit (A, B) ∈ GL𝑛(𝕂)2. Alors AB ∈ GL𝑛(𝕂) et (AB)−1 = B−1A−1.

Involution Soit A ∈ GL𝑛(𝕂). Alors A−1 est inversible et (A−1)−1 = A.

Inversibilité et puissance Soit A ∈ GL𝑛(𝕂). Pour tout 𝑘 ∈ ℕ, A𝑘 est inversible et (A𝑘)
−1 = (A−1)𝑘 (on note A−𝑘).

Inversibilité et transposée Soit A ∈ ℳ𝑛(𝕂). Alors A ∈ GL𝑛(𝕂) si et seulement si A⊤ ∈ GL𝑛(𝕂). Dans ce cas,
(A⊤)−1 = (A−1)⊤.

Méthode Calcul de l’inverse à l’aide d’un polynôme annulateur

Pour déterminer l’inverse d’une matrice A, on peut déterminer un polynôme annulateur de A i.e. un polynôme P tel que
P(A) = 0. On peut alors déterminer A−1 sous la forme d’un polynôme en A.
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Exercice 3.6

Soit

A =
⎛
⎜
⎜
⎝

1 0 2
0 −1 1
1 −2 0

⎞
⎟
⎟
⎠

.

1. Calculer A3 − A.

2. En déduire que A est inversible puis déterminer A−1.

Proposition 3.6 Inversibilité et inverse des matrices triangulaires

Une matrice triangulaire supérieure (resp. inférieure) T est inversible si et seulement si ses coefficients diagonaux sont
non nuls. Dans ce cas, T−1 est triangulaire supérieure (resp. inférieure) et ses coefficients diagonaux sont les inverses des
coefficients diagonaux de T.

Proposition 3.7 Inversibilité et inverse des matrices diagonales

Une matrice diagonale D est inversible si et seulement si ses coefficients diagonaux sont non nuls. Dans ce cas, D−1 est
diagonale et ses coefficients diagonaux sont les inverses des coefficients diagonaux de D.

Exemple 3.2

Les matrices de permutation, de dilatation et de transvection sont inversibles : P−1𝑖,𝑗 = P𝑖,𝑗, D𝑖(α)−1 = D𝑖 (
1
α) (si α ≠ 0)

et T𝑖,𝑗(α)−1 = T𝑖,𝑗(−α).

Proposition 3.8

Toute matrice inversible peut être transformée en la matrice identité à l’aide d’opérations sur les colonnes uniquement ou
à l’aide d’opérations sur les lignes uniquement.
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Méthode Calcul de l’inverse par la méthode de Gauss-Jordan

Supposons que l’on ait à inverser la matriceA =
⎛
⎜
⎜
⎝

1 0 2
1 −1 2
0 2 −1

⎞
⎟
⎟
⎠

. On écrit I3 à droite deA et on effectue les mêmes

opérations élémentaires sur les lignes de A et I3 de manière à transformer A en I3. La suite d’opérations sur les lignes de
A correspondra à une multiplication à gauche par A−1 : I3 sera donc transformé en A−1.

⎛
⎜
⎜
⎝

1 0 2 1 0 0
1 −1 2 0 1 0
0 2 −1 0 0 1

⎞
⎟
⎟
⎠

On annule dans la première colonne.

⎛
⎜
⎜
⎝

1 0 2 1 0 0
0 −1 0 −1 1 0
0 2 −1 0 0 1

⎞
⎟
⎟
⎠

L2 ← L2 − L1

Puis dans la deuxième ligne.

⎛
⎜
⎜
⎝

1 0 2 1 0 0
0 −1 0 −1 1 0
0 0 −1 −2 2 1

⎞
⎟
⎟
⎠

L3 ← L3 + 2L2

On met des 1 sur la diagonale.

⎛
⎜
⎜
⎝

1 0 2 1 0 0
0 1 0 1 −1 0
0 0 1 2 −2 −1

⎞
⎟
⎟
⎠

L2 ← −L2
L3 ← −L3

On annule au-dessus de la diagonale.

⎛
⎜
⎜
⎝

1 0 0 −3 4 2
0 1 0 1 −1 0
0 0 1 2 −2 −1

⎞
⎟
⎟
⎠

L1 ← L1 − 2L3

On a donc A−1 =
⎛
⎜
⎜
⎝

−3 4 2
1 −1 0
2 −2 −1

⎞
⎟
⎟
⎠

.

On aurait également pu placer I3 au-dessous de A et effectuer des opérations élémentaires sur les colonnes.

Remarque. Si jamais la matrice donnée n’est pas inversible, la méthode précédente donnera une ligne ou une colonne
nulle, ce qui montre la non inversibilité.

Attention!� Dans la méthode de Gauss-Jordan, on effectue des opérations sur les lignes ou sur les colonnes. Jamais sur
les deux en même temps !
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Explication de la méthode de Gauss-Jordan

Soit A ∈ GL𝑛(𝕂).
Supposons qu’on pivote uniquement sur les lignes d’une matrice A. La transformation de la matrice A en la matrice I𝑛 se
traduit par l’existence de matrices élémentaires G1,…G𝑘 telles que G𝑘…G1A = I𝑛. On a donc G𝑘…G1 = A−1. Comme
on effectue les mêmes opérations sur I𝑛, celle-ci est transformée en G𝑘…G1I𝑛 = A−1.
Supposons qu’on pivote uniquement sur les colonnes d’une matrice A. La transformation de la matrice A en la matrice
I𝑛 se traduit par l’existence de matrices élémentaires G1,…G𝑘 telles que AG1…G𝑘 = I𝑛. On a donc G1…G𝑘 = A−1.
Comme on effectue les mêmes opérations sur I𝑛, celle-ci est transformée en I𝑛G1…G𝑘 = A−1.

Remarque. L’algorithme du pivot de Gauss permet de montrer que toute matrice de GL𝑛(𝕂) peut s’écrire comme un
produit de matrices de dilatation et de transvection. On dit que ces matrices engendrent le groupe GL𝑛(𝕂).

Exercice 3.7

Déterminer l’inverse de la matrice :
⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 ⋯ 𝑛
0 1 2 ⋯ 𝑛 − 1
0 0 1 ⋯ 𝑛 − 2
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Exercice 3.8 Matrices diagonales par blocs

Soient A ∈ ℳ𝑛(𝕂) et B ∈ ℳ𝑝(𝕂). Montrer que la matrice M = (
A 0
0 B

) est inversible si et seulement si A et B le sont

et déterminer M−1 dans ce cas.
Étendre ce résultat à une matrice diagonale par blocs.

Exercice 3.9 Matrices triangulaires par blocs

Soient A ∈ ℳ𝑛(𝕂), B ∈ ℳ𝑝(𝕂) et C ∈ ℳ𝑛,𝑝(𝕂). Montrer que la matrice M = (
A C
0 B

) est inversible si et seulement

si A et B le sont.
Étendre ce résultat à une matrice triangulaire par blocs.

3.4 Trace

Définition 3.7 Trace

Pour A ∈ ℳ𝑛(𝕂), on appelle trace de A, notée tr(A), la somme des coefficients diagonaux de A.

Proposition 3.9 Propriétés de la trace

(i) La trace est une forme linéaire sur ℳ𝑛(𝕂).

(ii) Pour tout A ∈ ℳ𝑛(𝕂), tr(A⊤) = tr(A).

(iii) Pour tout (A, B) ∈ ℳ𝑛,𝑝(𝕂) ×ℳ𝑝,𝑛(𝕂), tr(AB) = tr(BA).
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Attention!� Si (A, B, C) ∈ ℳ𝑛(𝕂)3, on peut affirmer que d’une part tr(ABC) = tr(CAB) = tr(BCA) et, d’autre part que
tr(CBA) = tr(ACB) = tr(BAC). Mais en général

tr(ABC) = tr(CAB) = tr(BCA) ≠ tr(CBA) = tr(ACB) = tr(BAC)

4 Représentation matricielle des vecteurs et des applications linéaires

4.1 Matrices et vecteurs

Définition 4.1 Matrice d’un vecteur dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑛 ≥ 1, ℬ = (𝑒1,… , 𝑒𝑛) une base de E et 𝑥 ∈ E. On appelle matrice de 𝑥
dans la base ℬ la matrice colonne de taille 𝑛, notée matℬ(𝑥), formée des coordonnées de 𝑥 dans la base ℬ :

matℬ(𝑥) =
⎛
⎜
⎜
⎝

𝑒∗1 (𝑥)
⋮

𝑒∗𝑛(𝑥)

⎞
⎟
⎟
⎠

Exemple 4.1

La matrice de (1, −2, 4, −3) dans la base canonique de ℝ4 est

⎛
⎜
⎜
⎜
⎝

1
−2
4
−3

⎞
⎟
⎟
⎟
⎠

.

Exemple 4.2

La matrice de 4X3 + 3X2 − 2X − 5 dans la base canonique de ℝ3[X] est

⎛
⎜
⎜
⎜
⎝

−5
−2
3
4

⎞
⎟
⎟
⎟
⎠

.

Proposition 4.1

Soient E un 𝕂-espace vectoriel de dimension 𝑛 ≥ 1 et ℬ une base de E. L’application { E ⟶ ℳ𝑛,1(𝕂)
𝑥 ⟼ matℬ(𝑥)

est un

isomorphisme.

Remarque. En particulier, si on considère la base canonique de 𝕂𝑛, on peut associer à une matrice colonne de taille 𝑛
un unique vecteur de 𝕂𝑛.
On identifiera souvent les matrices colonnes de ℳ𝑛,1(𝕂) aux vecteurs de 𝕂𝑛.
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Définition 4.2 Matrice d’une famille de vecteurs dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑛 ≥ 1, ℬ = (𝑒1,… , 𝑒𝑛) une base de E et ℱ = (𝑓1,… , 𝑓𝑝) une famille de
vecteurs de E. On appelle matrice de ℱ dans la baseℬ la matrice de taille 𝑛×𝑝, notée matℬ(ℱ), formée des coordonnées
des vecteurs de ℱ dans la base ℬ :

matℬ(ℱ) = (𝑒∗𝑖 (𝑓𝑗))1≤𝑖≤𝑛
1≤𝑗≤𝑝

Exemple 4.3

La matrice de la famille ((1, 2, −3), (0, 1, 2), (−2, 1, 3), (4, 5, −1)) dans la base canonique de ℝ3 est
⎛
⎜
⎜
⎝

1 0 −2 4
2 1 1 5
−3 2 3 −1

⎞
⎟
⎟
⎠

.

Exemple 4.4

La matrice de la famille (−X3+X2−1, 2X2−3, 4X3+3X2−2X−5) dans la base canonique deℝ3[X] est

⎛
⎜
⎜
⎜
⎝

−1 −3 −5
0 0 −2
1 2 3
−1 0 4

⎞
⎟
⎟
⎟
⎠

.

Proposition 4.2 Matrices et bases

Soient E un 𝕂-espace vectoriel de dimension 𝑛 ≥ 1, ℬ = (𝑒1,… , 𝑒𝑛) une base de E et ℱ = (𝑓1,… , 𝑓𝑛) une famille de
vecteurs de E. Alors ℱ est une base de E si et seulement si matℬ(ℱ) est inversible.

4.2 Matrices et applications linéaires

Définition 4.3 Matrice d’une application linéaire dans des bases

Soient E et F deux 𝕂-espaces vectoriels de dimensions respectives 𝑝 et 𝑛. Soient ℬ1 = (𝑒1,… , 𝑒𝑝) et ℬ2 = (𝑓1,… , 𝑓𝑛)
des bases respectives de E et F. Soit enfin 𝑢 ∈ ℒ(E, F). On appelle matrice de 𝑢 dans les bases ℬ1 et ℬ2 la matrice de
taille 𝑛 × 𝑝 :

matℬ1,ℬ2 (𝑢) = matℬ2 (𝑢(𝑒1),… , 𝑢(𝑒𝑝))

A1,1 ⋯ A1,𝑝

⋮ ⋮

A𝑛,1 ⋯ A𝑛,𝑝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑢(𝑒1) ⋯ 𝑢(𝑒𝑝)

𝑓1

⋮

𝑓𝑛

𝑛
∑
𝑖=1

A𝑖,1𝑓𝑖 ⋯
𝑛
∑
𝑖=1

A𝑖,𝑝𝑓𝑖
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Exemple 4.5

Soit 𝑓∶ { ℝ3 ⟶ ℝ2

(𝑥, 𝑦, 𝑧) ⟼ (𝑥 + 𝑦 − 𝑧, 2𝑥 − 𝑦 + 3𝑧) . On vérifie que 𝑓 est bien une application linéaire. Notons ℬ3 et

ℬ2 les bases canoniques respectives de ℝ3 et ℝ2. Alors 𝑓(1, 0, 0) = (1, 2), 𝑓(0, 1, 0) = (1, −1) et 𝑓(0, 0, 1) = (−1, 3)

donc matℬ3,ℬ2 (𝑓) = (
1 1 −1
2 −1 3

).

Exemple 4.6

Soit T ∶ {
ℝ4[X] ⟶ ℝ5[X]

P ⟼ X4P(3) + P(2) + P(−X) . On vérifie que T est bien une application linéaire. Notons ℬ4 et ℬ5

les bases canoniques respectives deℝ4[X] etℝ5[X]. Alors T(1) = 2, T(X) = 2−X, T(X2) = X2+4, T(X3) = 6X4−X3+8

et T(X4) = 24X5 + X4 + 16 donc matℬ4,ℬ5 (T) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2 4 8 16
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 6 1
0 0 0 0 24

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proposition 4.3

Soient E et F deux 𝕂-espaces vectoriels de dimensions respectives 𝑝 et 𝑛. Soient ℬ1 = (𝑒1,… , 𝑒𝑝) et ℬ2 = (𝑓1,… , 𝑓𝑛)

des bases respectives de E et F. L’application { ℒ(E, F) ⟶ ℳ𝑛,𝑝(𝕂)
𝑢 ⟼ matℬ1,ℬ2 (𝑢)

est un isomorphisme.

Corollaire 4.1

Soient E et F deux espaces vectoriels de dimension finie. Alors dimℒ(E, F) = dimE × dimF.

Définition 4.4

Soit A ∈ ℳ𝑛,𝑝(𝕂). On appelle application linéaire canoniquement associée à A l’unique application 𝑓 ∈ ℒ(𝕂𝑝, 𝕂𝑛)
dont la matrice dans les bases canoniques de 𝕂𝑝 et 𝕂𝑛 est A.

Remarque. Quitte à identifier matrices colonnes et vecteurs, l’application linéaire canoniquement associée à A est

{ 𝕂𝑝 ⟶ 𝕂𝑛

X ⟼ AX .

Exemple 4.7

L’application linéaire canoniquement associée à la matrice (
2 −3 4
−1 0 2

) est

{ 𝕂3 ⟶ 𝕂2

(𝑥, 𝑦, 𝑧) ⟼ (2𝑥 − 3𝑦 + 4𝑧, −𝑥 + 2𝑧)
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Proposition 4.4 Interprétation matricielle de l’image d’un vecteur

Soient E et F deux𝕂-espaces vectoriels de dimension finie. Soientℬ1 etℬ2 des bases respectives de E et F. Soient 𝑥 ∈ E,
𝑦 ∈ F et 𝑢 ∈ ℒ(E, F). On pose X = matℬ1 (𝑥), Y = matℬ1 (𝑦) et U = matℬ1,ℬ2 (𝑢). Alors

𝑦 = 𝑢(𝑥) ⟺ Y = UX

Exemple 4.8

Soit 𝑢 ∈ ℒ(ℝ3, ℝ2) de matrice U = (
1 1 −1
2 −1 3

) où ℬ3 et ℬ2 sont les bases canoniques respectives de ℝ3 et ℝ2. Soit

𝑥 = (1, 2, 3) ∈ ℝ3. La matrice de 𝑥 dans ℬ3 est X =
⎛
⎜
⎜
⎝

1
2
3

⎞
⎟
⎟
⎠

. Puisque UX = (
0
9
), 𝑢(𝑥) = (0, 9).

Proposition 4.5 Interprétation matricielle d’une composée d’applications linéaires

Soient E, F et G trois 𝕂-espaces vectoriels de dimension finie. Soient ℬ1, ℬ2, ℬ3 des bases respectives de E, F, G. Soient
𝑢 ∈ ℒ(E, F) et 𝑣 ∈ ℒ(F,G). Alors

matℬ1,ℬ3 (𝑣 ∘ 𝑢) = matℬ2,ℬ3 (𝑣)matℬ1,ℬ2 (𝑢)

Remarque. Ces deux dernières propositions nous disent tout simplement que toute l’algèbre linéaire en dimension finie
peut être interprété en termes de matrices.

Proposition 4.6

Soient E et F deux 𝕂-espaces vectoriels de même dimension de bases respectives ℬ1 et ℬ2. Soit 𝑢 ∈ ℒ(E, F). Alors 𝑢
est bijective si et seulement si matℬ1,ℬ2 (𝑢) est inversible, et dans ce cas :

(matℬ1,ℬ2 (𝑢))
−1 = matℬ2,ℬ1 (𝑢

−1)

Matrices de Vandermonde

Soit (𝑥0,… , 𝑥𝑛) ∈ 𝕂𝑛+1. On poseM = (𝑥𝑗𝑖 )0≤𝑖,𝑗≤𝑛.M est inversible si et seulement si les 𝑥𝑖 sont distincts entre eux deux

à deux car M est la matrice de l’application linéaire { 𝕂𝑛[X] ⟶ 𝕂𝑛+1

P ⟼ (P(𝑥0),… , P(𝑥𝑛))
dans les bases canoniques de

𝕂𝑛[X] et 𝕂𝑛+1.

4.3 Matrices et endomorphismes
Dans le cas des endomorphismes, on utilise souvent la même base de départ et d’arrivée pour la représentation matri-

cielle.

Définition 4.5 Matrice d’un endomorphisme dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑛, ℬ une base de E et 𝑢 ∈ ℒ(E). On appelle matrice de 𝑢 dans la base ℬ la
matrice carrée de taille 𝑛 :

matℬ(𝑢) = matℬ,ℬ(𝑢)
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A1,1 ⋯ A1,𝑛

⋮ ⋮

A𝑛,1 ⋯ A𝑛,𝑛

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑢(𝑒1) ⋯ 𝑢(𝑒𝑛)

𝑒1

⋮

𝑒𝑛

𝑛
∑
𝑖=1

A𝑖,1𝑒𝑖 ⋯
𝑛
∑
𝑖=1

A𝑖,𝑛𝑒𝑖

Exemple 4.9 Matrice de l’identité

Soit E un espace vectoriel de dimension 𝑛 ∈ ℕ∗. La matrice de IdE dans toute base de E est I𝑛.

Exemple 4.10 Matrice d’un projecteur

La matrice d’un projecteur 𝑝 d’un espace vectoriel de dimension finie E dans une base adaptée à la décomposition en

somme directe E = Im𝑝 ⊕ Ker𝑝 est (
I𝑞 0𝑞,𝑟
0𝑟,𝑞 0𝑞

) avec 𝑞 = dim Im𝑝 et 𝑟 = dim Ker𝑝.

Exemple 4.11 Matrice d’une symétrie

La matrice d’une symétrie 𝑠 d’un espace vectoriel de dimension finie E dans une base adaptée à la décomposition en

somme directe E = Ker(𝑠 − IdE) ⊕ Ker(𝑠 + IdE) est (
I𝑞 0𝑞,𝑟
0𝑟,𝑞 −I𝑟

) avec 𝑞 = dim Ker(𝑠 − IdE) et 𝑟 = dim Ker(𝑠 + IdE).

Exemple 4.12 Sous-espace stable

Soit 𝑢 un endomorphisme d’un espace vectoriel de dimnension finie E. Soient F et G deux sous-espaces vectoriels de E
supplémentaires dans E. On note ℬ une base adaptée à la décomposition en somme directe E = F⊕ G.

Si F est stable par 𝑢, la matrice de 𝑢 dans ℬ est de la forme (
A C
0 B

) où A et B sont des matrices carrées de tailles

respectives dimF et dimG. Plus précisément, A est la matrice de l’endomorphisme induit par 𝑢 sur F dans la base de F
extraite de ℬ.

Si F etG sont stables par 𝑢, la matrice de 𝑢 dansℬ est de la forme (
A 0
0 B

) oùA et B sont à nouveau des matrices carrées

de tailles respectives dimF et dimG. Plus précisément, A et B sont respectivement les matrices des endomorphismes
induits par 𝑢 sur F et G dans les bases de F et G extraites de ℬ.

Proposition 4.7

Soient E un 𝕂-espace vectoriel de dimension 𝑛 et ℬ une base de E. L’application { ℒ(E) ⟶ ℳ𝑛(𝕂)
𝑢 ⟼ matℬ(𝑢)

est un

isomorphisme d’anneaux.
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Remarque. Comme précédemment, on peut associer à toute matrice de ℳ𝑛(𝕂) un unique endomorphisme de 𝕂𝑛.

Exercice 4.1

Montrer qu’une matrice triangulaire stricte est nilpotente à l’aide de l’endomorphisme qui lui est canoniquement associé.

Proposition 4.8

Soit E un𝕂-espace vectoriel de dimension 𝑛 et de baseℬ. L’application { GL(E) ⟶ GL𝑛(𝕂)
𝑢 ⟼ matℬ(𝑢)

est un isomorphisme

de groupes.

Corollaire 4.2

Soit E un 𝕂-espace vectoriel de dimension 𝑛 et de base ℬ. Soit 𝑢 ∈ ℒ(E). Alors 𝑢 est un automorphisme si et seulement
si matℬ(𝑢) est inversible et, dans ce cas, matℬ(𝑢−1) = matℬ(𝑢)

−1.

Exercice 4.2

Montrer que l’application { ℝ2[X] ⟶ ℝ2[X]
P ⟼ P(X + 1) + P(X) est un automorphisme de ℝ2[X].

Exercice 4.3

On poseA = ((
𝑗
𝑖
))

0≤𝑖,𝑗≤𝑛
en convenant que (

𝑗
𝑖
) = 0 pour 𝑖 > 𝑗. En remarquant queA est la matrice d’un endomorphisme

de 𝕂𝑛[X], montrer que A est inversible et déterminer son inverse.

Corollaire 4.3

Soit (A, B) ∈ ℳ𝑛(𝕂)2. Si AB = I𝑛, alors A et B sont inversibles et inverses l’une de l’autre.

Remarque. En toute généralité, on devrait prouver que AB = I𝑛 et BA = I𝑛. La proposition précédente nous dit donc,
que dans le cadre de l’anneau ℳ𝑛(𝕂), il suffit de vérifier l’une des deux conditions.

Exercice 4.4

Soient A et B dans ℳ𝑛(ℂ) telles que
AB = 𝕀𝑛 + A + A2.

Montrer que AB = BA.

Méthode Inversibilité et inversion d’une matrice

Pour déterminer l’inversibilité d’une matriceA ∈ ℳ𝑛(𝕂) et calculerA−1 le cas échéant, on écrit le système Y = AX avec
X = (𝑥1,… , 𝑥𝑛)⊤ et Y = (𝑦1,… , 𝑦𝑛)⊤ où les inconnues sont 𝑥1,… , 𝑥𝑛. Si le système admet une solution, elle est du type
X = A−1Y ce qui permet d’identifier A−1.
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4.4 Matrices et formes linéaires

Définition 4.6 Matrice d’une forme linéaire dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑝 et ℬ = (𝑒1,… , 𝑒𝑝) une base de E. Soit enfin φ ∈ E∗. On appelle matrice
de φ dans la base ℬ la matrice ligne de taille 𝑝 :

matℬ(𝑢) = matℬ(φ(𝑒1),… , φ(𝑒𝑝))

Remarque. En particulier, si on considère la base canonique de 𝕂𝑝, on peut associer à toute matrice ligne de taille 𝑝
une unique forme linéaire sur 𝕂𝑝.
On identifiera souvent les matrices lignes de ℳ1,𝑝(𝕂) aux formes linéaires sur 𝕂𝑝.

Définition 4.7 Matrice d’une famille de formes linéaires dans une base

Soient E un 𝕂-espace vectoriel de dimension 𝑝 ≥ 1, ℬ = (𝑒1,… , 𝑒𝑝) une base de E et ℱ = (φ1,… , φ𝑛) une famille de
formes linéaires sur E. On appelle matrice de ℱ dans la base ℬ la matrice de taille 𝑛 × 𝑝, notée matℬ(ℱ) :

matℬ(ℱ) = (φ𝑖(𝑒𝑗)1≤𝑖≤𝑛
1≤𝑗≤𝑝

5 Noyau, image et rang d’une matrice

5.1 Noyau et image

Définition 5.1

Pour A ∈ ℳ𝑛,𝑝(𝕂), on pose :

KerA = {X ∈ ℳ𝑝,1(𝕂) | AX = 0} ImA = {AX, X ∈ ℳ𝑝,1(𝕂)}

Remarque. L’application { ℳ𝑝,1(𝕂) ⟶ ℳ𝑛,1(𝕂)
X ⟼ AX est une application linéaire. KerA et ImA sont respectivement

le noyau et l’image de cette application linéaire. KerA et ImA sont donc des sous-espaces vectoriels respectifs deℳ𝑝,1(𝕂)
et ℳ𝑛,1(𝕂).

Remarque. Quitte à identifier les matrices colonnes de taille 𝑝 et 𝑛 aux vecteurs de 𝕂𝑝 et 𝕂𝑛, on peut dire que KerA et
ImA sont les noyau et image de l’application linéaire canoniquement associée à A.

Proposition 5.1

Soit A ∈ ℳ𝑛,𝑝(𝕂). ImA est le sous-espace vectoriel de ℳ𝑛,1(𝕂) engendré par les colonnes de A.

Méthode Calcul du noyau et de l’image

Pour déterminer le noyau d’une matriceA ∈ ℳ𝑛,𝑝(𝕂), il suffit de résoudre le système correspondant à l’équationAX = 0.
L’image d’une matrice A est le sous-espace vectoriel engendré par les vecteurs colonnes de A.
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Proposition 5.2 Lien entre noyau, image d’une application linéaire et de sa matrice

Soient ℬ1 et ℬ2 des bases respectives de deux 𝕂-espaces vectoriels E et F de dimension 𝑛 et 𝑝. Soient 𝑢 ∈ ℒ(E, F) et
A = matℬ1,ℬ2 (𝑢).

L’application { E ⟶ ℳ𝑝,1(𝕂)
𝑥 ⟼ matℬ1 (𝑥)

induit un isomorphisme de Ker𝑢 sur KerA.

L’application { F ⟶ ℳ𝑛,1(𝕂)
𝑥 ⟼ matℬ2 (𝑥)

induit un isomorphisme de Im𝑢 sur ImA.

Remarque. Comme pour les applications linéaires, on a des résultats classiques d’inclusions de noyau et d’image pour
les matrices :

• Ker(B) ⊂ Ker(AB) ;

• Im(AB) ⊂ Im(A) ;

• AB = 0 ⟺ ImB ⊂ KerA.

Méthode Calcul d’une base du noyau et de l’image d’une application linéaire grâce à sa matrice

Soit 𝑢 une application linéaire de matrice A dans deux bases. On sait déterminer une base de KerA et ImA. Les isomor-
phismes précédents nous permettent d’en déduire une base de Ker𝑢 et Im𝑢.

Exemple 5.1

Déterminer le noyau et l’image de l’application { ℝ3[X] ⟶ ℝ3[X]
P ⟼ P(X + 1) + P(X − 1) − 2P(X) .

Proposition 5.3 Noyau et inversibilité

Soit A ∈ ℳ𝑛(𝕂). Alors A est inversible si et seulement si KerA = {0}.

Proposition 5.4

Les opérations élémentaires sur les colonnes d’une matrice laissent son image inchangée.
Les opérations élémentaires sur les lignes d’une matrice laissent son noyau inchangé.
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Méthode Déterminer le noyau et l’image d’une matrice en même temps !

Supposons que l’on veuille déterminer le noyau et l’image de A =
⎛
⎜
⎜
⎝

1 2 1
2 1 −1
1 2 1

⎞
⎟
⎟
⎠

. On écrit A puis on ajoute

au-dessous une matrice identité.
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 1
2 1 −1
1 2 1

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Puis on pivote sur les colonnes.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
2 −3 −3
1 0 0

1 −2 −1
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C2 ← C2 − 2C1
C3 ← C3 − C1

Encore une fois pour avoir la dernière colonne nulle.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
2 −3 0
1 0 0

1 −2 1
0 1 −1
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C3 ← C3 − C2

On a alors ImA = vect
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1
2
1

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

0
−3
0

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

et KerA = vect
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1
−1
1

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

Attention!� Pour appliquer cette méthode, on pivote uniquement sur les colonnes.

http://lgarcin.github.io 22

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

5.2 Rang

Définition 5.2 Rang d’une matrice

Soit A une matrice. On pose rg(A) = dim ImA.

Remarque. Le rang d’une matrice est également le rang de la famille de ses vecteurs colonnes.

Remarque. Si A ∈ ℳ𝑛,𝑝(𝕂), alors rg(A) ≤ min(𝑛, 𝑝).

Remarque. On verra plus tard que rg(A) = rg(A⊤). Le rang d’une matrice est aussi le rang des vecteurs lignes de A.

Proposition 5.5 Rang d’une famille de vecteurs et de sa matrice

Soientℬ une base d’un𝕂-espace vectorielE de dimension finie etℱ une famille vecteurs deE. Alors rgℱ = rg(matℬ(ℱ)).

Proposition 5.6 Rang d’une application linéaire et de sa matrice

Soient ℬ1 et ℬ2 des bases respectives de deux 𝕂-espaces vectoriels E et F de dimension finie. Soit 𝑢 ∈ ℒ(E, F). Alors
rg𝑢 = rg(matℬ1,ℬ2 (𝑢)).

Proposition 5.7 Rang d’un endomorphisme et de sa matrice

Soient ℬ une base d’un 𝕂-espace vectoriel E de dimension finie. Soit 𝑢 ∈ ℒ(E). Alors rg𝑢 = rg(matℬ(𝑢)).

Corollaire 5.1 Théorème du rang matriciel

Soit A ∈ ℳ𝑛,𝑝(𝕂). Alors 𝑝 = rg(A) + dim Ker(A).

Corollaire 5.2 Rang et inversibilité

Soit A ∈ ℳ𝑛(𝕂). A est inversible si et seulement si rgA = 𝑛.

Lemme 5.1

Soient α ∈ 𝕂∗, A ∈ ℳ𝑛,𝑝(𝕂), C ∈ ℳ𝑛,1(𝕂) et L ∈ ℳ1,𝑝(𝕂). Alors

rg (
α L
0 A

) = rg (
α 0
C A

) = 1 + rgA
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Méthode Calcul du rang

On utilise le pivot de Gauss (sur les lignes ou les colonnes) pour annuler des coefficients sur la première ligne et le
lemme précédent pour se ramener à une matrice de taille inférieure. On supprime également les lignes ou colonnes nulles
apparaissant au cours des opérations de pivot.

rg

⎛
⎜
⎜
⎜
⎝

1 3 2 3 1
−3 −1 1 2 2
−1 −2 0 4 3
−20 −5 3 −10 −1

⎞
⎟
⎟
⎟
⎠

= rg

⎛
⎜
⎜
⎜
⎝

1 3 2 3 1
0 8 7 11 5
0 1 2 7 4
0 55 43 50 19

⎞
⎟
⎟
⎟
⎠

L2 ← L2 + 3L1
L3 ← L3 + L1
L4 ← L4 + 20L1

= 1 + rg
⎛
⎜
⎜
⎝

8 7 11 5
1 2 7 4
55 43 50 19

⎞
⎟
⎟
⎠

= 1 + rg
⎛
⎜
⎜
⎝

1 2 7 4
8 7 11 5
55 43 50 19

⎞
⎟
⎟
⎠

L1 ↔ L2

= 1 + rg
⎛
⎜
⎜
⎝

1 2 7 4
0 −9 −45 −27
0 −67 −335 −201

⎞
⎟
⎟
⎠

L2 ← L2 − 8L1
L3 ← L3 − 55L1

= 2 + rg (
−9 −45 −27
−67 −335 −201

)

= 2 + rg (
1 5 3

−67 −335 −201
) L1 ← −19L1

= 2 + rg (
1 5 3
0 0 0

) L2 ← L2 + 67L1

= 3

Remarque. Pour le calcul du rang, on peut effectuer des opérations de pivot sur les lignes et les colonnes en même
temps.

Proposition 5.8 Invariance du rang par multiplication par une matrice inversible

Soit A ∈ ℳ𝑛,𝑝(𝕂).

• Si B ∈ GL𝑛(𝕂), alors rg(BA) = rg(A).

• Si B ∈ GL𝑝(𝕂), alors rg(AB) = rg(A).
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6 Changements de bases, équivalence et similitude

6.1 Changement de base

Définition 6.1 Matrice de passage

Soient ℬ et ℬ′ deux bases d’un espace vectoriel E de dimension finie. On appelle matrice de passage de la base ℬ à la
base ℬ′ la matrice matℬ(ℬ′), notée Pℬ′

ℬ .

Proposition 6.1

Soient ℬ et ℬ′ deux bases d’un espace vectoriel E de dimension finie. Alors Pℬ′
ℬ est inversible et (Pℬ′

ℬ )
−1

= Pℬℬ′.

Remarque. On peut remarquer que Pℬ′
ℬ = matℬ′,ℬ(IdE).

Proposition 6.2 Changement de base pour les vecteurs

Soit ℬ et ℬ′ deux bases d’un espace vectoriel E de dimension finie. Soit 𝑥 ∈ E. On pose X = matℬ(𝑥), X′ = matℬ′ (𝑥)
et P = Pℬ′

ℬ . Alors X = PX′.

Attention!� La formule de changement de base est bien X = PX′ et non X′ = PX.

Proposition 6.3 Changement de base pour les applications linéaires

Soit E un 𝕂-espace vectoriel de dimension finie de bases ℰ et ℰ′. Soit également F un 𝕂-espace vectoriel de dimension
finie de bases ℱ et ℱ′. Soit enfin 𝑢 ∈ ℒ(E, F). On note P = Pℰ′ℰ , Q = Pℱ′

ℱ , A = matℰ,ℱ(𝑢) et A′ = matℰ′,ℱ′ (𝑢). Alors
A′ = Q−1AP.

Proposition 6.4 Changement de base pour les endomorphismes

Soit E un 𝕂-espace vectoriel de dimension finie de bases ℰ et ℰ′. Soit 𝑢 ∈ ℒ(E). On note P = Pℰ′ℰ , A = matℰ(𝑢) et
A′ = matℰ′ (𝑢). Alors A′ = P−1AP.

Méthode Se souvenir des formules de changement de base

Soient 𝑢 ∈ ℒ(E), 𝑥 ∈ E, 𝑦 = 𝑢(𝑥) ∈ E et ℬ,ℬ′ deux bases de E. Notons respectivement A,X, Y les matrices de 𝑢, 𝑥, 𝑦
dans la base ℬ et A′, X′, Y′ les matrices de 𝑢, 𝑥, 𝑦 dans la base ℬ′. Notons enfin P la matrice de passage de ℬ vers ℬ′. On
a Y = AX, X = PX′ et Y = PY′. On en déduit Y = P−1APX. Or Y′ = A′X′ donc A′ = P−1AP.

Proposition 6.5 Changement de base pour les formes linéaires

Soit E un 𝕂-espace vectoriel de dimension finie de bases ℰ et ℰ′. Soit φ ∈ E∗. On note P = Pℰ′ℰ , L = matℰ(φ) et
L′ = matℰ′ (φ). Alors L′ = LP.
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6.2 Matrices équivalentes et rang

Définition 6.2 Matrices équivalentes

Soient A et A′ deux matrices de ℳ𝑛,𝑝(𝕂). On dit que A′ est équivalente à A si et seulement si il existe P ∈ GL𝑝(𝕂) et
Q ∈ GL𝑛(𝕂) telle que A′ = Q−1AP.

Proposition 6.6

La relation «être équivalente à» est une relation d’équivalence.

Remarque. On pourra alors dire sans ambiguïté que deux matrices sont équivalentes plutôt que de dire que l’une est
équivalente à l’autre.

Exercice 6.1

Montrer que si A et B sont deux matrices équivalentes, il en est de même de A⊤ et B⊤.

Proposition 6.7

Deux matrices sont équivalentes si et seulement si elles représentent la même application linéaire dans deux couples de
bases.

Notation 6.1

Lorsque l’on travaille dans ℳ𝑛,𝑝(𝕂), pour 0 ≤ 𝑟 ≤ min(𝑛, 𝑝), on note J𝑛,𝑝,𝑟 la matrice suivante :

(
I𝑟 0𝑟,𝑝−𝑟

0𝑛−𝑟,𝑟 0𝑛−𝑟,𝑝−𝑟
)

Il est clair que la matrice J𝑛,𝑝,𝑟 est de rang 𝑟.

Proposition 6.8

Soient E et F deux 𝕂-espaces vectoriels de dimensions finies respectives 𝑝 et 𝑛 et 𝑢 ∈ ℒ(E, F). Alors 𝑢 est de rang 𝑟 si
et seulement si il existe des bases ℬ et ℬ′ de E et F telles que matℬ,ℬ′ (𝑢) = J𝑛,𝑝,𝑟.

Corollaire 6.1 Caractérisation du rang

Soit M ∈ ℳ𝑛,𝑝(𝕂). Alors M est de rang 𝑟 si et seulement si M est équivalente à J𝑛,𝑝,𝑟.
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Exercice 6.2

Soient A =

⎛
⎜
⎜
⎜
⎜
⎝

1 −4 −3 −2 −2
2 −6 −6 −4 −2
−3 12 12 6 3
0 2 3 0 −1

⎞
⎟
⎟
⎟
⎟
⎠

et 𝑟 = rgA. Déterminer U ∈ GL4(ℝ) et V ∈ GL5(ℝ) telles que UAV =

J𝑟.

Corollaire 6.2

Deux matrices ont même rang si et seulement si elles sont équivalentes.

Proposition 6.9 Invariance du rang par transposition

Soit A ∈ ℳ𝑛,𝑝(𝕂). Alors rgA⊤ = rgA.

Corollaire 6.3

Le rang d’une matrice est égal au rang de la famille de ses vecteurs lignes.

Définition 6.3 Matrice extraite

Soit A = (𝑎𝑖,𝑗)1≤𝑖≤𝑛
1≤𝑗≤𝑝

une matrice de ℳ𝑛,𝑝(𝕂). On appelle matrice extraite de A toute matrice de la forme (𝑎𝑖,𝑗)(𝑖,𝑗)∈I×J
où I ⊂ ⟦1, 𝑛⟧ et J ⊂ ⟦1, 𝑝⟧.

Remarque. Plus prosaïquement, une matrice extraite est une matrice obtenue en conservant certaines ou toutes les lignes
ou colonnes de la matrice initiale ou, de manière équivalente, en supprimant éventuellement certaines lignes ou colonnes
de la matrice initiale.

Exemple 6.1

La matrice
⎛
⎜
⎜
⎝

1 3 4
11 13 14
16 18 19

⎞
⎟
⎟
⎠

est une matrice extraite de la matrice

⎛
⎜
⎜
⎜
⎝

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

⎞
⎟
⎟
⎟
⎠

. On a en effet conservé les colonnes

1, 3, 4 et les lignes 1, 3, 4.

Proposition 6.10

Le rang d’une matrice extraite est inférieur au rang de la matrice dont elle est extraite.

Corollaire 6.4

Le rang d’une matrice est égale à la taille de la plus grande matrice carrée inversible que l’on peut extraire de cette matrice.
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6.3 Matrices semblables et trace

Définition 6.4 Matrices semblables

Soient A et B deux matrices de ℳ𝑛(𝕂). On dit que B est semblable à A si et seulement si il existe P ∈ GL𝑛(𝕂) telle que
B = P−1AP.

Exemple 6.2

La seule matrice semblable à la matrice identité est la matrice identité elle-même.
La seule matrice semblable à la matrice nulle est la matrice nulle.

Proposition 6.11

La relation de similitude («être semblable à») est une relation d’équivalence.

Remarque. On pourra alors dire sans ambiguïté que deux matrices sont semblables plutôt que de dire que l’une est
semblable à l’autre.

Remarque. Deux matrices semblables sont équivalentes. La réciproque est fausse.

Remarque. Si deux matrices sont semblables, l’une est inversible si et seulement si l’autre l’est.

Remarque. Si A et B sont semblables, alors A𝑛 et B𝑛 sont semblables pour tout 𝑛 ∈ ℕ (pour tout 𝑛 ∈ ℤ si A est
inversible).
Plus précisément, s’il existe une matrice inversible P telle que B = P−1AP, alors B𝑛 = P−1A𝑛P pour tout 𝑛 ∈ ℕ (pour
tout 𝑛 ∈ ℤ si A est inversible).

Exercice 6.3

Soit A = (
1 2
−1 4

). Montrer que A est semblable à une matrice diagonale. En déduire A𝑛 pour tout 𝑛 ∈ ℕ.

Proposition 6.12

Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme dans deux bases.

Proposition 6.13

Deux matrices semblables ont la même trace.

Attention!� La réciproque est fausse. Deux matrices de même trace ne sont même pas nécessairement équivalentes.
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Définition 6.5 Trace d’un endomorphisme

Soit 𝑢 un endomorphisme d’un espace vectoriel E de dimension finie. Alors la trace de matℬ(𝑢) est indépendante de la
base choisie. On l’appelle la trace de l’endomorphisme 𝑢 et on la note tr(𝑢).

Exemple 6.3 Trace d’un projecteur

La trace d’un projecteur est égale à son rang.

Proposition 6.14 Propriétés de la trace

Soit E un espace vectoriel de dimension finie. Soient 𝑢 et 𝑣 deux endomorphismes d’un même 𝕂-espace vectoriel de
dimension finie.

(i) La trace est une forme linéaire sur ℒ(E).

(ii) Pour tout (𝑢, 𝑣) ∈ ℒ(E)2, tr(𝑢 ∘ 𝑣) = tr(𝑣 ∘ 𝑢).

7 Systèmes linéaires

Interprétation matricielle d’un système linéaire

Un système linéaire (S) de 𝑛 équations à 𝑝 inconnues peut toujours se mettre sous la forme AX = B avec A ∈ ℳ𝑛,𝑝(𝕂)
B ∈ ℳ𝑛,1(𝕂) et où X ∈ ℳ𝑝,1(𝕂) est l’inconnue. B est alors appelé le second membre de ce système d’équations.
Le système linéaire homogène ou sans second membre associé à S est le système AX = 0.

Remarque. Résoudre un système linéaire, c’est également rechercher les coefficients des combinaisons linéaires des
vecteurs colonnes de A égales à B.
Si on note φ1,… , φ𝑝 les formes linéaires canoniquement associées aux lignes deA, c’est également rechercher les vecteurs
𝑥 ∈ 𝕂𝑛 tels que φ𝑖(𝑥) = 𝑏𝑖 pour 1 ≤ 𝑖 ≤ 𝑛.
C’est également déterminer l’intersection des hyperplans affines d’équations φ𝑖(𝑥) = 𝑏.

Définition 7.1

Le rang du système linéaire AX = B est le rang de A.
Un système linéaire est dit compatible s’il admet au moins une solution.

Proposition 7.1 Structure de l’ensemble des solutions

L’ensemble des solutions du système AX = 0 où A ∈ ℳ𝑛,𝑝(𝕂) est KerA. C’est un sous-espace vectoriel de ℳ𝑝,1(𝕂) de
dimension 𝑛 − rg(A).
Le système AX = B où A ∈ ℳ𝑛,𝑝(𝕂) et B ∈ ℳ𝑛,1(𝕂) n’a de solution que si B ∈ ImA. Dans ce cas, l’ensemble des
solutions est le sous-espace affine X0 + KerA où X0 est une solution particulière.
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Méthode Résolution d’un système linéaire

La résolution d’un système linéaire peut se faire de la manière suivante.

• On forme une nouvelle matrice C = (A|B) en plaçant B à droite de A.

• On effectue un pivot de Gauss sur les lignes de C de manière à se ramener à une matrice C′ = (A′|B′). Les solutions
de AX = B sont les solutions de A′X = B′. La résolution du second système est plus simple car A′ est sous forme
triangulaire.

Définition 7.2 Système de Cramer

On dit que le système AX = B est de Cramer si A est inversible (en particulier 𝑛 = 𝑝).

Proposition 7.2

Le système AX = B possède une unique solution si et seulement si A est inversible. Dans ce cas, cette unique solution
est A−1B.

Remarque. En pratique, on ne calcule jamais A−1 pour obtenir la solution. On triangularise le système avec la méthode
décrite précédemment.

Exercice 7.1

Résoudre le système d’équations suivant d’inconnues complexes :

⎧
⎪

⎨
⎪
⎩

𝑥1 + 𝑥2 + 𝑥3 + ... + 𝑥𝑛 = 1
𝑥1 + 2𝑥2 + 2𝑥3 + ... + 2𝑥𝑛 = 1
𝑥1 + 2𝑥2 + 3𝑥3 + ... + 3𝑥𝑛 = 1

⋮ ⋮ ⋮
𝑥1 + 2𝑥2 + 3𝑥3 + ... + 𝑛𝑥𝑛 = 1
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