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PoLYNOMES

Dans tout ce chapitre, K désigne les corps R ou C.

1 Polynomes a une indéterminée a coefficients dans K

1.1 Définition

Définition 1.1 Polynéme

On appelle polynéme & une indéterminée a coefficients dans K toute suite presque nulle (i.e. nulle a partir d’un certain
rang) d’éléments de K.

Si on choisit de noter X I'indéterminée, une telle suite (a,) nulle a partir du rang p + 1 se note alors ag + a; X + - + apXP
+00

ou encore Z a, X", cette somme étant en fait finie.

n=0
L’ensemble des polyndmes a une indéterminée a coefficients dans K se note alors K[X].

AtTENTION! Contrairement a ce qui se passait auparavant, on ne confondra pas polynémes et fonctions polynomiales.

REMARQUE. L'ensemble des suites presque nulles de KN se note K™). On peut donc identifier K[X] et KM,

Définition 1.2

* On appelle mondme tout polyndme du type AX¥ avec A € K.
* On appelle polyndome constant tout polyndme du type AX° = A avec A € KK.
* On appelle polynéme nul le polyndme correspondant a la suite nulle.

* On appelle coefficient dominant d’un polyndme le coefficient de son monome de plus haut degré.

* On appelle polynéme unitaire un polyndme dont le coefficient dominant est égal a 1.

. R . . P o L . ,
REMARQUE. Si P est un polyndme non nul de coefficient dominant A, alors — est un polyndme unitaire : on dit que c’est le

A

polyndme normalisé de P.

Proposition 1.1

Deux polyndmes sont égaux si et seulement si leurs coefficients sont égaux.

REMARQUE. En particulier, un polyndme est nul si et seulement si ses coefficients sont nuls.

AtTENTION! L’indéterminée X n’est pas un élément de K. En particulier, résoudre des équations polynomiales de la
maniere suivante n’a aucun sens.
X2-1=0 < X=1louX=-1)

En effet, X> — 1 = 0 signifie que X? — 1 est le polyndme nul i.e. celui dont tous les coefficients sont nuls, ce qui est
manifestement faux. Les égalités X = 1 et X = —1 n’ont pas plus de sens.
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Quant on voudra résoudre une équation polynomiale, on prendra garde d’introduire un scalaire. Par exemple, si z € R,
ce qui suit a un sens.
z22—1=0 < (z=1louz=-1)

Définition 1.3 Opérations sur les polyndomes
+0o0 +oo
Soient P = Z a,X"etQ = Z b, X" deux polynémes de K[X] et A € K.
n=0 n=0
+00
Addition On définit le polynéme P + Q par Z (a, + b,)X".
n=0
+o00
Multplication On définit le polyndme P X Q par Z ¢, X" avec ¢, = Z a;b;.
n=0 k+l=n
+o00
Multiplication par un scalaire On définit le polynéme A.P par Z Aa, X"
n=0
+0o
Composition de polyndmes On définit le polynéme P o Q = P(Q) par Z a,Q".
n=0

REMARQUE. Dans la définition du produit, on vérifie que la suite (c,,) est presque nulle. De plus, cette définition du produit
est telle que X" x XP = X"*P pour tout (n, p) € N2.

REMARQUE. Dans le cas particulier ot Q = X, le polyndme P o Q vaut P(X). Le polynéme P peut donc aussi bien étre noté P
ou P(X).

Exemple 1.1

La composition consiste simplement a remplacer 1’indéterminée X par un polyndme.

Par exemple, si P = X? + X + 1, alors P(X — 1) = (X — 1)? + (X — 1) + 1, P(X?) = X* + X2 + 1 ou encore P(X3 — 1) =
XB-12+X-1)+1.

Si (P, Q) € K[X]? vérifie (X? + 1)P = XQ, alors (X* + 1)P(X?) = X?Q(X?), en substituant X? 4 X.

Définition 1.4

e Un polynéme P est dit pair si P(—X) = P(X).

e Un polyndme P est dit impair si P(—X) = —P(X).

Exercice 1.1

+0oo
Soit P = Y a,X" € K[X].

n=0

1. Montrer que P est pair si et seulement si a,,,; = 0 pour tout n € N.

2. Montrer que P est impair si et seulement si a, , = 0 pour tout n € N.
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Proposition 1.2 Structures de K[X]

* (K[X], +, X) est un anneau commutatif.

* (K[X], +,.) est un K-espace vectoriel.

ReEMARQUE. (K[X],+,., X) est en fait une K-algébre commutative.

REMARQUE. Le fait que K[X] soit une K-algébre commutative, combiné au fait que X" x XP = X"*P
nous dit qu’on peut calculer avec les polyndmes comme on en avait I’habitude.

pour tout (n, p) € N2,

REMARQUE. (K[X],0) est un monoide non commutatif, ¢’est-a-dire que la loi o est une loi interne associative mais non

commutative sur K[X], d’élément neutre le polyndme X.

Définition 1.5 Base canonique de K[X]

La famille (X"),,cn est une base de K[X] appelée la base canonique de K[X].

Proposition 1.3
Soient (P, Q,R) € K[X]3 et (A, n) € K2. Alors

(AP +puQ)oR=2APoR+puQoR (PQ)eR=(PoR)(Q°R)
‘ ArTENTION! En général, Ro (AP + uQ) # ARo P+ uRo Qet Ro (PQ) # (Ro P)(Ro Q).

1.2 Degré d’un polynéme

Définition 1.6 Degré d’un polynome

+o0
Soit P = z a, X" € K[X]. Le degré de P, noté deg P, est défini par :

n=0
degpz{max{r.le N|a,#0}siP#0
—c0siP=0
Proposition 1.4 Degré et opérations
Soient (P, Q) € K[X]? et (A, ) € K2.
(i) deg(AP + nQ) < max(degP,deg Q).
(ii) deg(PQ) = degP + degQ.
(iii) degPoQ =degP X degQssi Q # 0.
REMARQUE. On adopte la convention 7 + (—o0) = (—o0) + n = —oo pour tout n € N U {—oo}.

REMARQUE. Si P et Q sont des polynomes de degrés distincts, deg(P + Q) = max(deg P, deg Q).
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Corollaire 1.1 Intégrité de K[X]

L’anneau K[X] est integre.

Corollaire 1.2 Eléments inversibles de K[X]

Les éléments inversibles de K[X] sont les polynémes de degré 0.

Définition 1.7 Polynomes de degré inférieur ou égal a n

Soit n € N. On note K,,[X] I’ensemble des polyndmes de degré inférieur ou égal a n.

Proposition 1.5 Structure de K,,[X]

Soit n € N. KK, [X] est un sous-espace vectoriel de K[X]. La famille (X¥)o<)<, est une base de [K,[X] appelée la base
canonique de K,,[X].

AttENTION! [K,,[X] n’est pas un sous-anneau de K[X].

Définition 1.8 Famille finie de polynomes a degrés échelonnés

Soit (By, Py, ... , P,) une famille de polynomes de K[X]. On dit que la famille (P, P, ..., P,,) est & degrés échelonnés si :

Vie[[0,n—1], degP, < degP.,,

Définition 1.9 Famille dénombrable de polynomes a degrés échelonnés

Soit (P,),en une famille de polyndmes de K[X]. On dit que la famille (P,),.cn est 2 degrés échelonnés si la suite (deg P,,)
est strictement croissante.

Proposition 1.6

Une famille de polyndmes a degrés échelonnés est libre si et seulement si elle ne contient pas le polyndéme nul.

REMARQUE. Une famille (P, ..., P,) de K[X] telle que deg P, = i pour tout i € [[0, n]] est une base de K, [X].
Une famille (P,),en de K[X] telle que deg B, = n pour tout i € N est une base de K[X].
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Exercice 1.2 Valuation d’un polynéme
+o0
Soit P = Z a, X" € K[X]. La valuation de P, noté val P, est définie par :
n=0
min{fn €N | a, #0}siP#0
valP =
+o0siP=0
1. Montrer que val(P + Q) > min(val P, val Q).
2. Montrer que val(PQ) = val P + val Q.

1.3 Fonctions polynomiales et racines

Définition 1.10 Fonction polynomiale

+00 to

Soit P = Z a,X". Pour x € K, on note P(x) = Z a,x".
n=0 n=0

K —

L application P : { o ) est appelée la fonction polynomiale associée au polyndme P.

ArTENTION! On ne dira jamais que I’on prend X = x dans P(X). En effet, x et X ne sont pas des objets du méme type,
la relation X = x n’a aucun sens. On dira plut6t que 1’on substitue x a X dans P(X), ou que I’on remplace X par x dans
P(X), ou bien encore que 1’on évalue P en x.

K[X KK
REMARQUE. Lapplication [ I]’ : P est un morphisme de K-algébres pour les lois +, ., X et un morphisme de

monoides pour la loi o.

REMARQUE. On verra plus tard qu’on peut justifier d’un point de vue théorique 1’identification entre polynome et fonction
polynomiale que vous acceptiez sans broncher jusqu’a maintenant.

REMARQUE. Il faut bien faire la différence entre le fait qu’un polynéme s’annule (son évaluation en un scalaire est nulle) et le
fait qu'un polyndme est nul (tous ses coefficients sont nuls).

Par exemple, si (X — a)P = 0, alors P = 0 par intégrité bien que X — a s’annule en a. Ce qui compte, ¢’est que X — a n’est pas
le polyndme nul.

Exercice 1.3

K[X]

Soit @ € K. Mont — K t une forme linéai K[X]
oita € \. ontrer que P —0 P(Cl) est une rorme lineaire sur .

Définition 1.11 Racine

Soient P € K[X] et a € K. On dit que a est une racine de P (dans K) si P(a) = 0.

ATTENTION ! La précision «dans IK» peut avoir de I’importance : le polyndme X? + 1 admet des racines dans C mais pas
dans R.
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)\ (2105 Montrer qu’un polyndme a coefficients réels admet une racine réelle

On peut employer des techniques d’analyse pour montrer qu’un polyndme admet une racine réelle.
1. Le théoréme des valeurs intermédiaires assure I’existence d’une racine de P € R[X] si P change de signe.

2. Le théoréme de Rolle montre que P’ s’annule si P prend deux fois la méme valeur.

Exemple 1.2

Un polyndme a coeflicients réels de degré impair admet nécessairement une racine réelle d’apres le théoréeme des valeurs
intermédiaires.

Proposition 1.7

Soient P € K[X] pair ou impair et a € [K. Alors a est une racine de P si et seulement si —a est également une racine de P.

1.4 Conjugaison

Définition 1.12 Conjugué d’un polynéme

+00 +o
Soit P = Z a, X" € C[X]. On appelle polynéme conjugué de P le polynéme P = Z a, X"
n=0 n=0

REMARQUE. En particulier, P € R[X] si et seulement si P = P.

Proposition 1.8

Soient P € C[X] et a € C. Alors a est une racine de P si et seulement si @ est une racine de P.
En particulier, si P € R[X], les racines complexes non réelles de P sont conjuguées deux a deux.

Proposition 1.9

Soient (P, Q) € C[X]? et (A, ) € C2. Alors

lae]

3|
)
Ol

AP+uQ=1P+uQ

En particulier, si (A, b) € R2, AP + uQ = AP + uQ.
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1.5 Dérivation

Définition 1.13 Polynome dérivé

+0o0 +o0

Soit P = Z a; XK. Le polyndme P’ = Z ka; XK1 est appelé le polynéme dérivé de P. On définit par récurrence les
k=0 k=1

polyndmes dérivés successifs P(M de P pour n € N.

REMARQUE. La dérivation des polyndmes «coincide» avec la dérivation des fonctions.

Sik=R,P' = (P).

Sik=C. (F), = (FR)’

En fait, on peut établir des notions de dérivabilité et de dérivée pour les fonctions de C dans C. On a alors P’ = (f’),, que le
corps soit R ou C.

Définition 1.14 Dérivées successives

Soit P € K[X]. On définit les dérivées successives de P en posant P(O) = P et P(**+1) = (P("))’ pour tout n € N.

Proposition 1.10 Degré de la dérivée

Soit P € K[X]. Si n < deg P, deg P = deg P — n. Sinon P = 0.
De maniére générale, deg P < degP — n.

Exemple 1.3

n!

an_k et pour k > n, (Xn)(k) = 0.

Pour k < n, XM)® =

Proposition 1.11 Linéarité de la dérivation

Soient (P, Q) € K[X]? et (A, w) € K2. Alors (AP + uQ)’ = AP’ + uQ’.
Pour tout n € N, (AP + uQ)™ = AP + Q™.

K[X] — K[X]
P — P
De maniére générale, Ker D" = K,,_;[X] pour tout n € N*,

REMARQUE. Sionnote D : , D € L(K[X]). D n’est pas injectif puisque Ker D = Kq[X].

Proposition 1.12 Dérivée d’un produit
Soit (P, Q) € K[X]?.
* (PQ’=P'Q+PQ.

" (n
« Formule de Leibniz : (PQ)™ = Z <k)P(k)Q(”_k)
k=0
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Proposition 1.13 Formule de Taylor pour les polyndomes

Soient P € K[X] et a € K.

+00 +00
pm p(m
P=> n,(a)(x —a)" Pla+X)= ) —n'(a)xn
n=0 : n=0

Proposition 1.14 Dérivée d’une composée

Soit (P, Q) € K[X]?. Alors (PoQ)' = (P’ o Q)Q’.

Exemple 1.4

Soit P € K[X]. Alors P(—X)’ = —P'(—X) et P(X2)’ = 2XP'(X?).

Exercice 1.4

En calculant la dérivée du polynéme (X + 1) de deux maniéres, retrouver le fait que pour tout couple (k, n) € N tel que

e n—1 _kn
< _n,onank_1 = k)

2 Arithmétique de K[X]

2.1 Divisibilité dans K[X]

Définition 2.1 Divisibilité dans K[X]

Soit (P, Q) € K[X]?. On dit que P divise Q ou que Q est un multiple de P s’il existe A € K[X] tel que Q = AP. On note
P|Q.

Proposition 2.1 Propriétés de la divisibilité

Soit (A, B, C,D) € K[X]*.
Réflexivité A | A.
Transitivité Si A|BetB | Calors A | C.

«Pseudo-antisymétrie» Si A | Bet B | A, alors il existe A € K* tel que B = AA. On dit alors que les polynomes A et B
sont associés.

«Combinaison linéaire» Si D | AetD | B, alors D | AU + BV pour tout (U, V) € K[X]?.

Produit Si A |BetC | D, alors AC | BD.
En particulier, si A | B alors A" | B" pour tout n € N.

Multiplication/division par un polynéme SiD # 0, A|B < AD | BD.

REMARQUE. On pourrait introduire la notion de congruence pour les polyndmes comme pour les entiers mais ce n’est pas au
programme...
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2.2 Division euclidienne

Proposition 2.2 Division euclidienne
Soit (A, B) € K[X]? avec B # 0. Alors il existe un unique couple d’entiers (Q,R) € K[X]? vérifiant :
(i) A=BQ+R (ii) degR < degB

A s’appelle le dividende, B le diviseur, Q le quotient, et R le reste.

REMARQUE. Soit (A, B) € R[X]?. La division euclidienne de A par B est la méme dans R[X] ou dans C[X].

Exemple 2.1

Soient P € K[X] et a € K. Le reste de la division euclidienne de P par X — a est P(a).

\Y (5100l Calculer le reste d’une division euclidienne

deg B—1
Pour calculer le reste de la division euclidienne de A par B, on écrit A = BQ+RavecR = Z a,X¥. On évalue ensuite
k=0
en les racines de B. En effet, si a est une racine de B, alors P(a) = R(a). Ceci nous permet de déterminer les coefficients
de R.

Exemple 2.2

Déterminer le reste de la division euclidienne de X' — X° par X? — 3X + 2.

Proposition 2.3

Soit (A, B) € K[X]? avec B # 0. Alors B divise A si et seulement si le reste de la division euclidienne de A par B est nul.

REMARQUE. Soient (A, B) € R[X]?. Si B divise A dans C[X], alors B divise également A dans R[X].

Proposition 2.4 Racine et divisibilité

Soient P € K[X] et a € K. a est une racine de P si et seulement si X — a divise P.

W\ (53 6 Y Division euclidienne de P par (X — aP)

La formule de Taylor nous donne directement le quotient est le reste de la division euclidienne de P par (X— a)P. En effet,
P=(X-a)PQ+ R avec

(n)
Q=3 x-ar

n>p n
p(n)(a)
R=> (X -
n<p
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— Algorithme de la division euclidienne

X + X + 1 X+1
-(xX3 + X?) X2 -X+2

R X
-(-x* - X)

2X + 1

-2X + 2

-1

N\ J

Exercice 2.1

Soit B € K[X] avec deg B > 1. Montrer que I’application qui & un polyndme P associe le reste de la division euclidienne
de P par B est un projecteur de K[X]. Déterminer son noyau et son image.

2.3 PGCD

Définition 2.2 PGCD

Soit (P, Q) € K[X]?. On appelle plus grand commun diviseur (PGCD) du couple (P, Q) tout polynéome D € K[X]
vérifiant :

(i) D est multiple communde Pet Qie. D |PeTD | Q;

(ii) tout diviseur commun de P et Q divise D.

Proposition 2.5 Existence et «unicité » du PGCD

Soit (P, Q) € K[X]?. Deux PGCD de (P, Q) sont associés.
Il existe un unique PGCD unitaire ou nul de (P, Q). On le note P A Q.

REMARQUE. Le PGCD de deux polynomes est nul si et seulement si ces deux polyndmes sont nuls.

REMARQUE. Soit P € K[X] avec P # 0. PA O = P ot P est le polyndme normalisé de P.

Lemme 2.1

Soit A = BQ + R la division euclidienne de A € K[X] par B € K[X] avec B # 0. Alors AAB = BAR.

L algorithme suivant permet de déterminer le PGCD de deux polyndmes par une succession de divisions euclidiennes.

— Algorithme d’Euclide

On reprend I’idée de ’algorithme d’Euclide vu dans le cadre de I’arithmétique dans Z. On définit donc une suite (R;,) de
la maniére suivante :

1. Onpose Ry = AetR; =B.
2. Pour n > 1, Ry, est le reste de la division euclidienne de R,,_; par R,,.

(degR,,) est une suite strictement décroissante d’éléments de N U {—oo} (a partir du rang 1) : elle est donc égale 3 —co a
partir d’un certain rang. La suite (R,,) est donc nulle a partir d’un certain rang. Soit N I’indice du dernier terme non nul
de cette suite. Le lemme précédent montre que Ry = A A B ol Ry est le polyndme normalisé de Ry.
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Exemple 2.3

Déterminons le PGCD de 6X* + 8X3 — 7X? — 5X — 2 et 6X° —4X%2 — X — 1.

6X* +8X3 —7X? —5X -2 =(X+2) X (6X3 —4X?> —X —1)+2X?> - 2X
6X3 —4X2 -X—-1=(3X+1) x (2X2 -2X) +X-1
2X2 —2X =2Xx (X—-1) +0

On a donc (6X* 4+ 8X3 —7X? — 5X —2)A(6X3 —4X2 =X - 1) =X — 1.

Théoréme 2.1 Bézout

Soit (A, B) € K[X]2. Il existe (U, V) € K[X]? tels que AU + BV = A AB. On appelle (U, V) un couple de coefficients
de Bézout. Une €galité du type précédent s’appelle une identité de Bézout.

ArtEnTION! Ces coefficients ne sont pas uniques. Si (Uy, V) est un couple de coefficients de Bézout, tous les couples de
la forme (U, + KB, Vy — KA) avec K € K[X] le sont aussi.
La réciproque de ce théoreme est fausse.

——— Algorithme d’Euclide étendu

On reprend a nouveau 1’idée de 1’algorithme d’Euclide étendu vu dans le cadre de I’arithmétique dans Z. On reprend
les notations de I’algorithme d’Euclide. Pour tout n > 1, on a R,,,; = R,, — Q,R,,_;. Le dernier reste non nul Ry est
le PGCD D de A et B. On abrégera combinaison linéaire a coefficients polynomiaux en CLP. On peut ainsi exprimer
D comme une CLP de Ry_; et Ry_,. Puis comme on peut exprimer Ry_; comme une CLP de Ry_, et Ry_3, on peut
exprimer D comme une CLP de Ry_, et Ry_3, etc... Finalement on peut exprimer D comme une CLP de Ry = A et
R; = B. Plutdt qu’un long discours, reprenons 1’exemple traité pour 1’algorithme d’Euclide standard.

Exemple 2.4

Réécrivons les divisions euclidiennes de 1’algorithme d’Euclide standard sous une autre forme :
2X2 —2X = (6X* +8X3 —7X? —5X —2) — (X +2) X (6X3 —4X2 - X - 1)
X-1=(6X3—4X>-X-1) —(3X +1) x (2X2 —2X)
On part ensuite du PGCD (c’est-a-dire X — 1) et on remonte les lignes de la maniere suivante :
X—-1=(6X3—4X?-X-1)—(3X+1) x (2X? - 2X)
= (6X3—4X2—X—1)—(3X+1)[(6X4+8X3—7X2—5X—2)—(X+2)><(6X3—4X2—X—1)]
=—(BX4+1D)x(EX+8X3—7X2—5X—2)+ (BX?+ 7X +3) x (6X3 —4X> —-X—-1)

Et voila notre identité de Bézout.
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2.4 Polynomes premiers entre eux

Définition 2.3 Polynémes premiers entre eux

Soit (P,Q) € K[X]?. On dit que P et Q sont premiers entre eux si leurs seuls diviseurs communs sont les polyndmes
constants non nuls i.e. si leur PGCD vaut 1.

Théoreme 2.2 Bézout

Soit (P, Q) € K[X]?. Alors P et Q sont premiers entre eux si et seulement si il existe (U, V) € K[X]? tel que UP+VQ = 1.

REMARQUE. Contrairement au premier théoréme de Bézout, on a bien ici une équivalence.

Théoréme 2.3 Gauss

Soit (A,B,C) € K[X]3.Si A | BCet AAB = 1alors A | C.

Proposition 2.6

Soit (P, ..., P.) € K[X]" et Q € K[X].
1. Si P, ..., P. sont tous premiers avec Q, alors le produit P, ... P. est également premier avec Q.

2. Si P, ..., P. sont premiers entre eux deux a deux et divisent Q, alors le produit P; ... B, divise également Q.

Lemme 2.2

Soit (a,b) € K? avec a # b. Alors (X —a) A(X —b) = 1.

Théoreme 2.4

Un polyndme de degré n € N de K[X] possede au plus n racines dans K.

\YE1 0 Prouver qu’un polyndome est nul

Pour prouver qu’un polyndme est nul, il suffit de prouver qu’il possede une infinité de racines.

Exercice 2.2

Soit P € K[X] tel que P(X + 1) = P(X). Montrer que P est constant.

Exercice 2.3

Déterminer les polyndmes P € C[X] tels que P(R) C R.
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Proposition 2.7

Si le corps K est infini, I’application qui 2 un polyndme P € K[X] associe la fonction polynomiale P € K¥ est une
application linéaire injective.

REMARQUE. C’est méme un morphisme injectif de K-algebres.

REMARQUE. Autrement dit, toute fonction polynomiale est associée a un unique polyndme, ce qui justifie la fait que I’'on
confonde polyndme et fonction polynomiale. Cette identification repose sur le fait que R et C sont des corps infinis. Mais tous
les corps ne sont pas infinis comme vous le verrez 1’année prochaine.

W\ (53 01 Y Identification de coefficients

Si deux fonctions polynomiales coincident sur un ensemble infini (typiquement R), leurs coefficients sont égaux.

REMARQUE. La réciproque est évidemment vraie.

Proposition 2.8 Polynéme interpolateur de Lagrange

Soient (xg, ..., X,,) et (Jg» ... » V) deux n-uplets de IK"*! o1 les x; sont distincts deux a deux. Il existe un unique polyndéme
de K,[X] tel que P(x;) = y; pour tout i € [0, n].
n

Le polyndme en question est Z yiL; ot
i=0
X —Xx;
J
L; =

J#i

Kn [X] SN K"+1

est un isomorphisme.
P — (P(xo),...,P(x,)) p

REMARQUE. I suffit en effet de montrer que I’ application {

REMARQUE. Les polyndémes Q € K[X] tels que Q(x;) = y; pour tout i € [0, n]| (sans contrainte de degré) sont les polynémes
n

P+M ] [(X - x;) avec M € K[X].

i=0
2.5 PPCM
Définition 2.4 PPCM

Soit (P, Q) € K[X]2. On appelle plus petit commun multiple du couple (P, Q) tout polyndome M € K[X] vérifiant :
(i) M est un multiple communde Pet Qi.e. P | MetQ | M;

(i) tout multiple commun de P et Q est multiple de M.

Proposition 2.9 Existence et «unicité » du PPCM

Soit (P, Q) € K[X]?. Deux PPCM de P et Q sont associés.
Il existe un unique PPCM unitaire ou nul de (P, Q). On le note PV Q.

REMARQUE. Le PPCM de deux polynomes est nul si et seulement si I’un des deux est nul.
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Proposition 2.10 Lien entre PGCD et PPCM

Soit (P, Q) € K[X]2. Alors (P AQ)(PV Q) et PQ sont associés.

3 Racines multiples

3.1 Définition

Définition 3.1 Racines multiples

Soient P € K[X] et a € K. On dit que a est une racine de P d’ordre (de multiplicité) p si p est le plus grand entier k tel
que (X — a)¥ divise P.
On dit que a est une racine multiple de P si a est une racine d’ordre au moins 2.

REMARQUE. Si P # 0, cet entier p existe puisque {k EN|X- a)k | P} est une partie non vide (elle contient 0) et majorée
(par deg P) de N.

REMARQUE.
* Dire que a est une racine d’ordre p de a signifie que (X — a)? | P mais que (X — a)P*! } P.
« Dire que a est une racine d’ordre au moins p signifie que (X — a)P | P.
* Une racine de P est une racine d’ordre au moins 1.

* Une racine d’ordre 0 n’est pas une racine de P.

Lemme 3.1

Soit (a,b) € K2 avec a # b. Soit (p,q) € N?. Alors (X —a)’P A(X —b)? = 1.

Théoreme 3.1

Soit P € K[X] un polyndme de degré n € N. Alors P posséde au plus n racines comptées avec leur multiplicité.

Exemple 3.1

Le polyndme (X — 1)(X + 1)?(X — 2)3 posséde 3 racines distinctes mais 6 racines comptées avec leur multiplicité.

3.2 Dérivation et ordre de multiplicité

REMARQUE. Les deux sommes précédentes sont bien entendu finies puisque la suite des dérivées successives de P est nulle a
partir d’un certain rang.

Proposition 3.1 Caractérisation de la multiplicité d’une racine

Soient P € K[X], a € Ketr € N. a est une racine de P de multiplicité r si et seulement si

Vk € [0,r — 1], P®(a) = 0 er PM(a) £ 0
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REMARQUE. P(a) = P'(a) = --- = PU"D(a) = 0si et seulement si a est racine de P de multiplicité au moins égale 2 r.
a est racine multiple de P si et seulement si P(a) = P'(a) = 0.

\Y (53 01 Division euclidienne

Pour trouver le reste R de la division euclidienne de P € K[X] par (X — a)"(X — b)%, on peut constater que P — R est
divisible par (X — a)"(X — b)’. Autrement dit, a et b sont des racines de P — R d’ordre respectifs au moins r et s. On en
déduit les conditions

R(a) = P(Cl) R’(a) — P/(a) R(r—l)(a) — P(r—l)(a)
R(b) = P(b) R/(b) = P'(b) R(s—l)(b) — P(s—l)(b)

ce qui suffit & déterminer R (r + s conditions pour un polynémes de K, ¢_;[X]).

Exercice 3.1 % Calcul d’un reste

Déterminer de deux maniéres le reste R dans la division euclidienne d’un polyndéme P € K[X] par B = (X — a)? oll
aek

Proposition 3.2

Soient P € K[X] pair ou impair et a € K. a est une racine de P de multiplicité 7 si et seulement si —a est également une
racine de P de multiplicité r.

REMARQUE. Si P est pair ou impair, a est une racine d’ordre au moins r de P si et seulement si —a est une racine d’ordre au
moins r de P.

Proposition 3.3

Soient P € C[X], a € Cetr € N. a est une racine d’ordre r de P si et seulement si @ est une racine d’ordre r de P.
En particulier, si P € R[X], les racines complexes non réelles de P sont conjuguées deux a deux et deux racines complexes
non réelles conjuguées sont de méme ordre de multiplicité.

REMARQUE. a est une racine d’ordre au moins r de P si et seulement si a est une racine d’ordre au moins r de P.

4 Factorisation

4.1 Polynomes irréductibles

Définition 4.1 Polynomes irréductibles

Soit P € K[X]. On dit que P est irréductible (dans K[X]) si P n’est pas constant et si ses seuls diviseurs sont les polyndmes
constants et les polyndmes associés a P.

ATTENTION ! La précision «dans K[X]» peut avoir de I’importance : le polyndme X? + 1 est irréductible dans R[X] mais
pas dans C[X].

REMARQUE. Deux polyndmes irréductibles distincts sont premiers entre eux.
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Exemple 4.1

Tout polyndme de degré 1 est irréductible.

Il est important de comprendre que les polyndmes irréductibles ont le méme r6le dans ’anneau K[X] que les nombres
premiers dans I’anneau Z.

Proposition 4.1 Lemme d’Euclide

Soit (P, A, B) € K[X]? avec P irréductible. Si P | AB, alors P | Aou P | B.

REMARQUE. Cette propriété se généralise par récurrence a un produit de plus de deux polynomes.

Proposition 4.2

Soit (A, B) € K[X]?. A et B sont premiers entre eux si et seulement si ils n’admettent aucun diviseur irréductible commun.

Théoréme 4.1 Décomposition en facteurs irréductibles dans K[X]
On note J I’ensemble des polyndmes irréductibles unitaires de K[X].

Soit P € K[X] non nul. Il existe un unique A € K* et une unique famille (Ug )res d’entiers naturels presque tous nuls (i.e.

nuls sauf un nombre fini d’entre eux) telle que Q = A H RMR,
ReJ

Comme dans le cas de I’arithmétique dans Z, on peut caractériser la divisibilité, le PGCD et le PPCM a I’aide de cette
décomposition en facteurs irréductibles.

Proposition 4.3

Soient P = )»H RMR et Q = pLH RR,
ReJ ReJ

(i) P|Q < VR E T, ug < Vg

(i) PAQ = [ Rmin(rvR),
ReJ

(iii) PvQ = J ] Rm®rvr),
ReJ

4.2 Factorisation dans C[X]

Théoreme 4.2 Théoreme de d’Alembert-Gauss

Tout polyndme non constant de C[X] posseéde une racine (dans C).

Proposition 4.4 Irréductibles de C[X]

Les polyndmes irréductibles de C[X] sont les polynomes de degré 1.
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Corollaire 4.1

Tout polyndme non nul de C[X] admet autant de racines comptées avec multiplicité que son degré.

Corollaire 4.2

Deux polyndmes C[X] sont premiers entre eux si et seulement si ils n’ont pas de racine complexe commune.

REMARQUE. C’est a fortiori vrai pour des polynémes de R[X] a condition de considérer les racines complexes. Par exemple,
(X + 1)(X% + 1) et (X 4 2)(X? + 1) n’ont pas de racine réelle commune mais ne sont pas premiers entre eux.

Exemple 4.2

Les polyndmes X% + X + 1 et X* — 1 sont premiers entre eux.

Corollaire 4.3

Soit (P,Q) € C[X]?. Alors P divise Q si et seulement si toute racine complexe de P est racine de Q avec au moins le
méme ordre de multiplicité.

REMARQUE. C’est a fortiori vrai si (P, Q) € R[X]? & condition de considérer les racines complexes. Posons P = (X+1)(X?+1)
et Q = (X+1)%(X*+1). Toute racine réelle de P (ici —1) est racine de Q avec au moins le méme ordre de multiplicité. Pourtant
P ne divise pas Q.

Exemple 4.3

Soit P € R[X]. X2 + X + 1 divise P si et seulement si P(j) = 0.

Proposition 4.5

Pour n € N*, la décomposition en facteurs irréductibles de X" — 1 est X" — 1 = H X —o.
wely

Exercice 4.1

Soit (m, n) € (N*)z. Montrer que (X™ — 1) AX" — 1) = X"A" — 1.

4.3 Factorisation dans R[X]

Proposition 4.6 Irréductibles de R[X]

Les polyndmes irréductibles de R[X] sont les polynomes de degré 1 et les polyndmes de degré 2 de discriminant stricte-
ment négatif.
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\Y (53 LY Factorisation dans R[X]

Pour factoriser un polynome réel dans R[X], on le factorise d’abord dans C[X] puis on regroupe les facteurs comportant

des racines complexes non réelles conjuguées deux a deux.

REMARQUE. Une relation utile 2 connaitre est X2 — 2X cos 8 4+ 1 = (X — €!®)(X — e79) pour 6 € R.

Exercice 4.2

Donner la décomposition en facteurs irréductibles de X* + 1 dans C[X] et R[X].

Exercice 4.3

que j est une racine multiple de P.

Décomposer le polyndme P = (X + 1)7 — X7 — 1 en produit de facteurs irréductibles dans C[X] et dans R[X] en sachant

4.4 Lien entre coefficients et racines d’un polynéme

Définition 4.2 Polynéme scindé

Soit P € K[X]. On dit que P est scindé (sur K) s’il peut s’écrire comme un produit de polynémes de degré 1 de K[X].

Proposition 4.7

Tout polyndme de C[X] de degré supérieur ou égal a 1 est scindé sur C.

Proposition 4.8

ATTENTION ! La précision «sur K» peut avoir de I'importance : X2 + 1 est scindé sur C mais pas sur R.

Un polynéme de K[X] de degré n € N* est scindé sur K si et seulement si il posséde exactement 7 racines dans K

comptées avec multiplicité.

Exemple 4.4

Le polyndme X" — 1 est scindé sur C et

Xt-1= [ X-w)

wely,

Définition 4.3 Fonctions symétriques élémentaires

Ok = Z oailocl-z aik
1§i1<i2<---<ik§n

Soit (¢, ... ,a,) € K". Pour k € [[1, n]], on définit la k*™ fonction symétrique élémentaire de cy, ..

., o, notée oy, par
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Exemple 4.5

Concretement oy, est la somme de tous les produits de k éléments parmi ay, ..., a,. Sin = 3,

01 =0 + 0, + a3 Oy = 010y + a0z + 030 O3 = X103

Proposition 4.9 Relations coefficients/racines

n
Soient P = Z a,X* un polynéme de degré n € N*, scindé sur K et (aty, ..., ) € K.

k=0
On note oy, ..., 0, les fonctions symétriques élémentaires associées a oy, ... , 0y,
. . PP . —D¥a,_

Alors o, ..., &, sont les n racines de P (comptées avec multiplicité) si et seulement si Vk € [[1,n], o = ()a—"k.
n
. . . ap—1 n %o

REMARQUE. o est la somme des racines et ¢,, est le produit des racines. On a alors 6; = — a eto, =(-1) R

n n

Exemple 4.6

Montrer que Z w=0pourn > 2et H w = (=1)"*! pourn > 1.
wely, wely,

Exercice 4.4 *%

Résoudre dans C le systéme suivant :

x + y + z =1
X2+ ¥y o+ z2 =9

1 1 1

-+ - 4+ - =1

X y z

5 Compléments

5.1 PGCD d’un nombre fini de polynomes

Définition 5.1 PGCD

Soit (P}, ..., B.) € K[X]". On appelle plus grand commun diviseur (PGCD) de (P, ..., P.) tout polyndéme P € K[X]
vérifiant :

(i) P estun diviseur commun des P;;

(ii) tout diviseur commun des P; est un diviseur de P.

Proposition 5.1 Existence et «unicité» du PGCD
Soit (P, ..., PB.) € K[X]". Si les P; sont non tous nuls, il existe un unique PGCD unitaire de (P, ..., P.). On le note

P, A ... AB.. L'unique PGCD de (0, ..., 0) est 0.
Deux PGCD de (P, ..., P.) sont associés.
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Théoréme 5.1 Bézout

p
Soit (P, ..., P.) € K[X]". Il existe (Uy, ..., U,) € K[X]" tel que ZUiPi =P A...AP.
i=1

5.2 Polynomes premiers entre eux dans leur ensemble

Définition 5.2 Polynomes premiers entre eux dans leur ensemble

Soit (P, ..., B.) € K[X]". On dit que P,, ..., P, sont premiers entre eux dans leur ensemble si P, A ... AP, = 1.

AtTENTION! Si les P, sont premiers entre eux deux a deux, alors ils sont premiers entre eux dans leur ensemble mais la
réciproque est fausse.

Par exemple, (X—1)(X—2), (X —2)(X —3), (X —3)(X—1) sont premiers entre eux dans leur ensemble sans étre premiers
entre eux deux a deux.

Théoreme 5.2 Bézout

;
Soit (P, ..., P.) € K[X]". Alors P, A ... AP, = 1 si et seulement si il existe (Uy, ..., U,) € K[X]" tel que Z UpP =1
i=1

Proposition 5.2

Soit (P, ..., B.) € K[X]". Alors P; A ... AP, = 1 si et seulement si il existe P, ..., P, n’admettent aucun diviseur irréduc-
tible commun.

5.3 PPCM d’un nombre fini de polynomes (hors programme)

Définition 5.3 PPCM (hors programme)

Soit (P, ..., B.) € K[X]". On appelle plus petit commun multiple (PPCM) de (P,, ..., P,) tout polynéme P € K[X]
vérifiant :

(i) P est un multiple commun des B;;

(ii) tout multiple commun des P; est un multiple de P.

Proposition 5.3 Existence et «unicité » du PPCM (hors programme)

Soit (P, ..., P.) € K[X]". Si les P; sont tous non nuls, il existe un unique PPCM unitaire de (P,,...,P.). On le note
P,V..VP.

Sinon, I’'unique PPCM de (P, ..., P.) est 0.

Deux PPCM de (P, ..., P.) sont associés.
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