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RAISONNEMENTS

1 Propositions logiques

1.1 Définition et négation

Définition 1.1 Proposition

On appelle proposition un énoncé mathématique qui peut étre vrai ou faux.

Exemple 1.1

Deux propositions simples.
* «1 4+ 1 = 2» est une proposition vraie.

* «7 est un entier pair» est une proposition fausse.

Définition 1.2 Négation

A une proposition P, on peut associer sa négation notée NoN P qui est vraie si P est fausse et fausse si P est vraie.

1.2 Conjonction et disjonction

Définition 1.3 Conjonction

A deux propositions P et Q, on peut associer la conjonction de P et Q notée P ET Q qui est
* vraie si les deux propositions P et Q sont vraies ;

* fausse si I’'une au moins des deux propositions P ou Q est fausse.

—— Table de vérité de la conjonction

P| Q| PerQ
V|V A%
V| F F
F|V F
F | F F
- J
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Exemple 1.2

Soit ABCD un rectangle. La proposition
«l’angle ABC est droit et les diagonales [AC] et [BD] se coupent en leur milieu»

est vraie.
Soit ABC un triangle. La proposition

«AB > AC + BC et ABC + CAB + BCA = 7»

est fausse.

Définition 1.4 Disjonction

A deux propositions P et Q, on peut associer la disjonction P ou Q qui est
e vraie si I’'une au moins des deux propositions P ou Q est vraie;

* fausse si les deux propositions P et Q sont fausses.

— Table de vérité de la disjonction

P| Q| PouQ
V|V \%
V| F \Y
F |V \%
F | F F
N J

REMARQUE. Le «ou» considéré ici est un «ou» non exclusif. La proposition P ou Q est vraie si I’une au moins des deux
propositions P ou Q est vraie et non si exactement une des propositions est vraie.

Exemple 1.3

Soit ABC un triangle. La proposition
«AB > AC + BC ou ABC + CAB + BCA = n»

est vraie.

1.3 Implication et équivalence

Définition 1.5 Implication

A deux propositions P et Q, on peut associer la proposition P = Q qui est
e vraie si P est fausse ou si P et Q sont vraies

¢ fausse si P est vraie et Q fausse.
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— Table de vérité de ’implication

P|Q|P=AQ
VIV v
V| F F
F |V v
F|F v
N J

REMARQUE. SiPetP = Q sont vraies, alors nécessairement Q est vraie.

REMARQUE. L'implication Q = P s’appelle la réciproque de I'implication P = Q. Si une implication est vraie, sa
réciproque n’est pas forcément vraie.

Exemple 1.4

2

Soient a et b deux réels. Alors a = b => a? = b? est vraie mais a> = b> = a = b est fausse en général.

Définition 1.6 Equivalence

A deux propositions P et Q, on peut associer la proposition P < Q qui est
* vraie si P et Q sont vraies ou si P et Q sont fausses;

* fausse sinon.

— Table de vérité de I’équivalence

PIQ[P < Q
VARY Y
V|F F
F |V F
F|F Y
K J

Exemple 1.5

Soient a et b deux réels. Alorsa = b < % = eb.

1.4 Formule propositionnelle

Définition 1.7 Formule propositionnelle

On appelle formule propositionnelle une combinaison de propositions logiques et de connecteurs logiques.

Définition 1.8 Tautologie

Une formule propositionnelle est appelée une tautologie si elle est vraie quelques soient les valeurs de vérité des propo-
sitions logiques qui la composent.
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Exemple 1.6

Si P est une proposition logique, P ou (Non P) est une tautologie.

Notation 1.1

Si F et G sont des formules propositionnelles, on notera F = G si la proposition F < G est une tautologie.

Proposition 1.1 Reformulations

Soient P et Q des propositions logiques.
« (P = Q) =((xonP)ouQ).
P = Q=(P = Q=rr(Q = P)).
* (PouQ) = ((NonP) = Q).

Exercice 1.1

Soient P et Q des propositions logiques. Montrer que (P er (P = Q)) = Q est une tautologie.

1.5 Conditions nécessaires et/ou suffisantes

—— Conditions nécessaires et conditions suffisantes

Soient P et Q deux propositions.

* On dit que Q est une condition nécessaire pour avoir P si, dés que P est vraie alors nécessairement forcément Q est
vraie. Autrement dit, P = Q est vraie.

* On dit que Q est une condition suffisante pour avoir P s’il suffit que Q soit vraie pour que P soit vraie. Autrement
dit, Q = P est vraie.

* On dit que Q est une condition nécessaire et suffisante pour avoir P quand P est vraie si et seulement si Q est vraie.
Autrement dit, P <= Q est vraie.

Exercice 1.2

Soit x € R. La proposition «x > 1» est-elle une condition nécessaire de la proposition «x?+x+2 > 3» ? Méme question
avec suffisante.

1.6 Regles de calcul propositionnel

Proposition 1.2 Distributivité

Soient P, Q et R trois propositions logiques. Alors on a :
* (PouQ)erR) = ((PeTR) 0U (QETR))
* (PerQ)ouR) = ((PouR)Er(QouR))

REMARQUE. On dit que la conjonction (resp. la disjonction) est distributive sur la disjonction (resp. conjonction).
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Exemple 1.7

Proposition 1.3 Négation

Soient P et Q deux propositions logiques. Alors on a :
« noN(P ET Q) = ((NoN P) ou (NoN Q))
+ noN(P ou Q) = ((NoN P) ET (NoN Q))
« NoN(P = Q) = (PET(NONQ))

Exemple 1.8

La négation de la proposition —1 < x <2estx < —lou x > 2.

Exemple 1.9

Soient P la proposition «Il y a de la fumée» et Q la proposition «Il y a du feu». Le célebre proverbe «Il n’y a pas de fumée
sans feu» se traduit par P = Q. Sa négation est «Il y a de la fumée et il n’y a pas de feu» qui se traduit par P et (NoN Q).

1.7 En pratique

\Y (5 LG Y Montrer qu’une implication est vraie

Pour montrer que P = Q est vraie, il suffit de montrer que si P est vraie, alors Q est vraie.

REMARQUE. La notation logique P = Q correspond en francais a la phrase «si P alors Q».

@ AtTENTION! L'implication P = Q peut étre vraie sans que P et Q ne soient forcément vraies.
Quand on vous demande de montrer que I’implication P = Q est vraie, il ne s’agit nullement de prouver que P ou Q
sont vraies mais que si P est vraie, alors Q est vraie.

\Y 10 Y Montrer qu’une équivalence est vraie

Pour montrer que P <= Q est vraie, il suffit de montrer que si P est vraie, alors Q est vraie et que si Q est vraie, alors P
est vraie.

REMARQUE. La notation logique P <= Q correspond en frangais a la phrase «P si et seulement si Q».
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AtTENTION! L'équivalence P <= Q peut étre vraie sans que P et Q ne soient forcément vraies.
Quand on vous demande de montrer que I’équivalence P <= Q est vraie, il ne s’agit nullement de prouver que P ou Q
sont vraies mais que P est vraie si et seulement si Q est vraie.

En pratique, dans une rédaction, on n’emploiera jamais les symboles = et <= . Le seul endroit ou le symbole <=
est toléré, c’est dans les résolutions d’équations ou d’inéquations.
On préférera I’emploi de mots de francais : conjonctions de coordination (mais, ou, et, donc, or, ni, car), conjonctions de
subordination (parce que, si, puisque, ...) ou adverbes (ainsi, cependant, ...).

2  Quantificateurs

2.1 Définition et exemples
* Le symbole V signifie «pour tout», «quelque soit».
* Le symbole 3 signifie «il existe».
* Le symbole 3! signifie «il existe un unique».

On peut construire des propositions logiques (vraies ou fausses) a I’aide de ces quantificateurs.

Exemple 2.1

Quelques exemples de propositions avec quantificateurs.
e «Wx € R,x% > 0» est une proposition vraie,
* «dn € N,n < 0» est fausse,
* «Vre Q,3dp € N, pr € Z» est vraie,

o «dn € N,Vx € R, x < n» est fausse.

Exemple 2.2

Soient f et g deux fonctions de R dans R. Alors f = g < Vx € R, f(x) = g(x).

AtTENTION! L'ordre des quantificateurs est important : on ne peut pas permuter un V et un 3 sans changer le sens de la
proposition. Par contre, on peut changer 1’ordre de plusieurs V qui se suivent ou de plusieurs 3 qui se suivent.

Exemple 2.3

On se convaincra de la pertinence de la remarque précédente en comparant les deux propositions suivantes (on note JH
I’ensemble des hommes et F celui des femmes) :

Vh € H,3f € F, f estlamere de h
autrement dit «tout homme a une mere» et

Af € F,Vh € K, f est lamere de h

autrement dit «il existe une mere de tous les hommes».
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Exemple 2.4

Voici un exemple plus mathématique.
VxeR,dneZ, n>x

est un proposition vraie.
dnezZ VxeR, n>x

est une proposition fausse.

Exercice 2.1

Traduire en toutes lettres les huit propositions suivantes lorsque x désigne un individu, y un film et que p(x,y) est la
proposition «L’individu x a vu le film y».

1. Vx,Vy, p(x,y); 5. Ax, 3y, p(x,y);
2. Ax,Vy, p(x,y); 6. Iy, 3% p(x.7):
3. 3y, Vx, p(x,y); Co T e

4. Vx,3y, p(x,y); 7. Yy, 3x, p(x, y).

Exercice 2.2

Soit f une fonction de R dans R. Ecrire a I’aide de quantificateurs les propositions suivantes :
a. f est I’application nulle.

b. f ne s’annule pas sur R.

c. f n’est pas la fonction nulle.

d. f s’annule sur R.

e. f est une fonction affine.

2.2 Négation d’une proposition avec quantificateurs

\Y (51 WG Y Négation d’une proposition avec quantificateurs

Pour nier une proposition contenant des quantificateurs, on change les V en 3 et réciproquement. La négation de
Vx, 3y, P(x,y)

est

Jx, Vy, NoN P(x, y)
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Exemple 2.5

La négation de la proposition «tous les chats sont gris» n’est pas la proposition «aucun chat n’est gris» mais la proposition
«il existe un chat qui n’est pas gris». En effet, si x désigne un chat, la proposition de départ peut s’écrire

VX, x est gris.

Sa négation est donc
dx, x n’est pas gris.

2.3 En pratique

¢ Quand on demande de prouver une proposition du type Vx € A, P(x), la rédaction commence TOUJOURS par «Soit
x € A». Cela signifie que ’on se donne un élément x de A quelconque.

* Quand on demande de prouver une proposition du type 3x € A, P(x), il suffit de trouver UN x dans A tel que P(x) est
vraie.

Exemple 2.6

Pour prouver que Vx,y € R,3z € R,z > x + y, on commence la rédaction de la maniere suivante : «Soient x,y € R».
Maintenant que x et y sont fixés, il suffit de trouver z supérieur a x+y. Ici, nous avons le choix. On acheéve la démonstration
de la maniére suivante : «Posons z = x + y + 1. Alors z > x + y». Et c’est terminé !

3 Méthodes de démonstration

3.1 Raisonnement par implication

C’est le type de raisonnement standard. On sait qu’une proposition P est vraie et que I’implication P = Q est vraie. On
en déduit que Q est vraie. On répete ceci autant de fois que nécessaire jusqu’a aboutier a la proposition dont on veut montrer
qu’elle est vraie.

En pratique, la démonstration contiendra des mots comme «donc», «ainsi», etc...

Exemple 3.1

L’exercice suivant se résout par implication.

Soit f une fonction paire dérivable sur R.
Montrer que f” est impaire.

f est paire donc pour tout x € R, f(x) = f(—x).
Donc pour tout x € R, f'(x) = —f'(—x) (car f est dérivable).
Donc f' est impaire.

ATTENTION! On évitera a tout prix ce genre d’erreur.

Soit ABC un triangle de c6tés AB = 3, AC =4 et BC = 5.
Si le triangle ABC est rectangle en A, alors BC? = AB% + AC2. Or AB? + AC? = 32 + 42 = 52 = BC? donc
ABC est rectangle en A.

Autrement dit, si P = Q et Q sont vraies, alors P est vraie...
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3.2 Raisonnement par double implication

Pour montrer que P <= Q est vraie, on suppose P vraie et on montre que Q est vraie et réciproquement. La démontration
se fait donc en deux temps : une premiere débutant par «Supposons P et montrons Q» et une seconde débutant par «Supposons
Q et montrons P». On passe ensuite de P a Q et de Q a P en utilisant a chaque fois des implications.

Exemple 3.2

On considere 1’énoncé suivant.

Soit ABCD un quadrilatere.
Montrer que ABCD est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.

On montre les implications

«ABCD est un parallélogramme => [AC] et [BD] se coupent en leur milieu»
et

«[AC] et [BD] se coupent en leur milieu => ABCD est un parallélogramme»
Il y aura donc deux phases dans la démonstration, I’'une commengant par

«Supposons que ABCD est un parallélogramme»

I’autre commengant par

«Supposons que [AC] et [BD] se coupent en leur milieu.

3.3 Raisonnement par équivalence

Pour montrer que P <= Q est vraie, on peut également procéder en une seule étape. On passe alors de P a Q en utilisant a
chaque fois des équivalences. Cette méthode est plus courte que la précédente (une seule étape au lieu de deux) mais peut aussi
étre plus fastidieuse puisqu’on doit vérifier que chaque enchainement logique de la démonstration est bien une équivalence et
pas seulement une implication.

Le raisonnement par équivalence est généralement réservé a la résolution d’équations et d’inéquations. On lui préférera en
général le raisonnement par double implication.

ATTENTION! Dans 90% des cas, on vous demande de montrer des implications plutdt que des équivalences. Le raison-
nement par équivalence est donc souvent inutile et générateur d’erreurs logiques. En clair, je ne veux pas voir des copies
remplies de symboles <= dont la plupart sont faux et inutiles.

Le raisonnement par équivalence permet de montrer qu’une proposition est vraie en montrant qu’elle est équivalente a une
proposition dont on sait déja qu’elle est vraie.

Exemple 3.3

1
On souhaite montrer que pour tout (x,y) € R?, xy < E(x2 + ¥2). On peut procéder de la maniére suivante.

Soit (x,y) € R2.

xyS%(x2+y2)
= 2xy < x> +)?
<0< x2+y?—2xy
= 0<(x—y)?

La derniere proposition étant vraie, la premiere 1’est également.
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3.4 Raisonnement par I’absurde

Pour prouver qu’une proposition P est vraie, on montre que la proposition Non P est fausse : en pratique, on suppose que P
est fausse et on aboutit a une contradiction.

Exercice 3.1

Prouver que \/E est irrationnel.

3.5 Contraposée

On sait que (P = Q) = (nonQ = n~onP), donc pour montrer P => Q est vraie, on peut montrer que
NOoN Q = NoN P est vraie : en pratique, on suppose que NoN Q est vraie et on montre que NoN P est vraie.

Exercice 3.2

Soit a € R. Montrer que
Ve>0, |[a|<g) = a=0

Exercice 3.3

Soit n € N. Montrer que si n> — 1 n’est pas divisible par 8, alors n est pair.

3.6 Alternative

Pour montrer P ou Q est vraie, il est nécessaire et suffisant de montrer (Non P) = Q. La rédaction est la suivante :
«Supposons que P est fausse et montrons qu’alors Q est nécessairement vraie.

Exercice 3.4

Soit x € R. Montrer que x2 > 1 ou (x — 2)? > 1.

3.7 Disjonction des cas

On veut montrer que P => Q est vraie et on sait que P < (P, ou B,). Il est alors équivalent de montrer que
(P, = Q)er (P, = Q) est vraie. On sépare I’hypothése de départ P en différents cas possibles P, et P,.
REMARQUE. On a considéré une disjonction en deux cas par souci de simplification mais on peut évidemment considérer une
disjonction en plus de deux cas.

Exercice 3.5

nn+1)

e N.
2

Montrer que si n € N, alors

3.8 Récurrence
3.8.1 Récurrence simple

On considére une proposition qui dépend d’un entier n notée HR(n). Cette proposition est appelée 1’hypothése de récur-
rence. La méthode est alors la suivante :

Initialisation On montre que la proposition HR(n) est vraie pour un certain n, € N (bien souvent ny = 0).

Hérédité On montre HR(n) = HR(n + 1) est vraie pour tout n > n,. On rédige de la maniére suivante :
«On suppose HR(n) pour un certain n > n, et on montre HR(7 + 1)».
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Conclusion Par principe de récurrence, HR(n) est vraie pour tout n > n,.

REMARQUE. Dans la phase d’hérédité, on peut également montrer que HR(n—1) = HR(n) est vraie pour tout n > ny+ 1.

Exemple 3.4

1
Soit (u,,) une suite réelle de premier terme uy = 1 et telle que U, < >Un pour tout n € N.

1 PP R . 1
On souhaite montrer que u,, < n pour tout n € N. On définit I’hypothese de récurrence HR(n) : «u,; < —».

S on
R : . 1

Initialisation HR(0) est vraie puisque uy = 1 < R

Heérédité S . . 1 < 1 . < 1 0 < 1 d
érédité Supposons HR(n) vraie pour un certain n € N. Alors u,, < on Puis SUn < o Or Uggn < Sup done

1
Upyq < SHAL Ainsi HR(n + 1) est vraie.

; g . . 1
Conclusion Par récurrence, HR(n) est vraie pour tout n € N. Autrement dit, u,, < on Pour tout n € N.

REMARQUE. On peut éventuellement s’ affranchir de nommer explicitement I’hypotheése de récurrence. Le raisonnement pré-
cédent peut également se rédiger de la maniere suivante.
1

Initialisation u; =1 < >0

1 1 1 1 1
Hérédité Supposons que u, < 5n Pour un certain n € N. Alors 5Un < S Oru,, < 5Un donc u,,q < S

. . 1
Conclusion Par récurrence, u,, < o pour tout n € N.

ArteENTION ! Dans I’hypothése de récurrence HR(n) ne doit jamais figurer «Vn» ou «pour tout n» : I’hypothése de récur-
rence porte sur un seul entier n a la fois.

Dans la phase d’hérédité, je ne veux jamais voir écrit : «on suppose HR(n) pour tout n € N». Ceci signifie que vous
supposez ce que vous voulez montrer.

Ces deux erreurs montrent que vous n’avez strictement rien compris au principe de récurrence.

La conclusion est le seul endroit ou doit figurer «Vn» ou «pour tout n».

ATTENTION! Si dans la phase d’hérédité, ’hypothese de récurrence n’est pas employée, c’est que la démonstration par
récurrence est INUTILE.

Supposons par exemple que I’on veuille montrer que 2"**! est pair pour tout n € N. Voila le raisonnement par récurrence
a NE PAS FAIRE.

20+1

Initialisation = 2 est pair.

Hérédité Supposons 2"*! pair pour un certain n € N. Alors 22 = 2 x 2"*1 est pair. On n’a pas utilisé ’hypothese
de récurrence!

Conclusion 2"*! est pair pour tout n € N.

Evidemment la bonne démonstration tient en une ligne.
Soit n € N. Alors 2"*! = 2 x 2" est pair.

3.8.2 Récurrence double

Il existe un autre principe de récurrence appelée récurrence double.
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Initialisation On montre que les proposition HR(n,) et HR(nj + 1) sont vraies pour un certain ng € N (bien souvent ny = 0).

Hérédité On montre HR(n) T HR(n + 1) = HR(n + 2) est vraie pour tout n > ny. On rédige de la maniére suivante :
«On suppose HR(n) et HR(n + 1) pour un certain 1 > ng et on montre HR(n + 2)».

Conclusion Par principe de récurrence double, HR(n) est vraie pour tout n > n,.

REMARQUE. On peut aussi se ramener & une récurrence simple en changeant 1’hypothése de récurrence HR(n) en une hypothése
de récurrence HR'(n) valant HR(n) eTr HR(n + 1).

AtTENTION! Il faut initialiser en démontrant la propriété pour les deux premiers rangs.

Exemple 3.5

Soit (4,,)nen la suite définie par uy, u, = 2et:Vn € N, u,,, = U, + Uy,. On souhaite montrer : Vn € N*,u,, > n.
Premiére version On définit I’hypothése de récurrence HR(n) : «u,, > n».

Initialisation u; =1 > 1etu, = 2 > 2 donc HR(1) et HR(2) sont vraies.

Hérédité On suppose HR(n) et HR(n + 1) vraies pour un certain n € N*. Alors u, > netu,,; > n+ 1 puis
Upip =Upp + Uy 2201+ 1 > n+2carn > 1. Ainsi HR(n + 2) est vraie.

Conclusion Par récurrence double, HR(n) est vraie pour tout n € N*. Autrement dit, u,, > n pour tout n € N*,

Deuxiéme version On définit ’hypothése de récurrence HR(n) : «uy, > netu, > n+ 1».

Initialisation u; =1 > 1 et u, = 2 > 2 donc HR(1) sont vraies.

Hérédité On suppose HR(n) vraie pour un certainn € N*. Alors u,, > netu, ., > n+1puisy, ., = Uy +U, >
2n+12>n+2carn > 1. Puisque 'on a déja u,,; > n+ 1, HR(n + 1) est vraie.

Conclusion Par récurrence simple, HR(n) est vraie pour tout n € N*. A fortiori, u,, > n pour tout n € N*,

Troisiéme version Sans expliciter I’hypothése de récurrence.

Initialisation u; = 1> letu, =2 2> 2.

Hérédité Onsuppose queu, > netu,,, > n+1pouruncertainn € N*. Alors u,, ., = U, +U, > 2n+1 > n+2
car n > 1. Ainsi HR(n + 2) est vraie.

Conclusion Par récurrence double, u,, > n pour tout n € N*.

3.8.3 Récurrence forte
Il existe encore un autre principe de récurrence appelé récurrence forte.
Initialisation On montre que la proposition HR(n,) est vraie pour un certain ny € N (bien souvent ny = 0).

Hérédité On montre (HR(ny) er HR(ng + 1) BT --- ET HR(N — 1) ET HR()) = HR(N + 1) est vraie pour tout n > n,. On
rédige de la maniere suivante :
«Soit n > ny. On suppose HR(k) pour tout k < n et on montre HR(n + 1)».

Conclusion Par principe de récurrence forte, HR(n) est vraie pour tout n > ny.

REMARQUE. On peut aussi se ramener & une récurrence simple en changeant 1’hypothése de récurrence HR(n) en une hypothése
de récurrence HR'(n) valant HR(ny) Er HR(ng + 1) ET --- ET HR(N — 1) ET HR(R).
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Exemple 3.6

On considere la suite définie par ug = let: Vn € N, u, 1 = ug + u; + -+ + u,. On souhaite montrer que u,, € N pour
tout n € N.

Premiére version On définit I’hypothése de récurrence HR(n) : «u,, € N».

Initialisation On a uy, = 1 € N donc HR(0) est vraie.

Hérédité On suppose HR(k) vraie pour tout k € [0, n] pour un certain n € N. Alors uy, ..., U, sont des entiers
naturels. Ainsi u,; est une somme d’entiers naturels donc un entier naturel. Ainsi HR(n + 1) est vraie.

Conclusion Par récurrence forte, HR(n) est vraie pour tout n € Ni.e. u, € N pour tout n € N.
Deuxieéme version On définit I’hypothése de récurrence HR(n) : «Vk € [0, n], up € N».

Initialisation On a uy = 1 € N donc HR(0) est vraie.

Hérédité On suppose HR(n) pour un certain n € N. Alors uy, ..., U, sont des entiers naturels. Ainsi ©,; est une
somme d’entiers naturels donc un entier naturel. Ainsi HR(n + 1) est vraie.

Conclusion Par récurrence simple, HR(n) est vraie pour tout n € N i.e. u,, € N pour tout n € N.
Troisiéme version Sans expliciter ’hypothése de récurrence.

Initialisation Onauy =1€ N.

Hérédité Supposons Vk € [0,n], ur € N pour un certain n € N. Ainsi u,,; est une somme d’entiers naturels
donc un entier naturel.

Conclusion Par récurrence forte, HR(n) est vraie pour tout n € N i.e. u,, € N pour tout n € N.

Exercice 3.6

n

Soit (u,) la suite définie par uy = 1 et u,, = Z uy, pour tout n € N. Montrer que u,, = 2"~! pour tout n € N*.
k=0

3.9 Analyse-synthese

On suppose le probleme résolu et on en déduit des conditions nécessaires : c’est la phase d’analyse. On montre que ces
conditions sont en fait suffisantes et on résout le probléme : c’est la phase de synthése.

Exemple 3.7

On souhaite montrer que toute fonction de R dans R est la somme d’une fonction paire et d’une fonction impaire.
Tout d’abord, on se donne une fonction f de R dans R.

Analyse On suppose que f estla somme d’une fonction paire g et d’une fonction impaire h. Alors pour tout x € R, f(x) =
g(x) + h(x). On a donc également, f(—x) = g(—x) + h(—x) pour tout x € R. Mais g et h étant respectivement

JI+ f(=x)
2

paire et impaire, f(—x) = g(x) — h(x) pour tout x € R. On en déduit que nécessairement, g(x) =

f&) = f(=x)
2

et h(x) = pour tout x € R.

Synthése Posons donc g(x) = W et h(x) = w pour tout x € R. On vérifie alors que

* f =g+ hpuisque pour tout x € R, f(x) = g(x) + h(x);
* g est paire puisque pour tout x € R, g(—x) = g(x);
* h est impaire puisque pour tout x € R, h(—x) = —h(x).

f est donc bien la somme d’une fonction paire et d’une fonction impaire.
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REMARQUE. On a méme prouvé I’unicité de la fonction paire et de la fonction impaire.
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