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Raisonnements

1 Propositions logiques

1.1 Définition et négation

Définition 1.1 Proposition

On appelle proposition un énoncé mathématique qui peut être vrai ou faux.

Exemple 1.1

Deux propositions simples.

• «1 + 1 = 2» est une proposition vraie.

• «7 est un entier pair» est une proposition fausse.

Définition 1.2 Négation

A une proposition P, on peut associer sa négation notée nonP qui est vraie si P est fausse et fausse si P est vraie.

1.2 Conjonction et disjonction

Définition 1.3 Conjonction

A deux propositions P et Q, on peut associer la conjonction de P et Q notée P et Q qui est

• vraie si les deux propositions P et Q sont vraies ;

• fausse si l’une au moins des deux propositions P ou Q est fausse.

Table de vérité de la conjonction

P Q P et Q
V V V
V F F
F V F
F F F
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Exemple 1.2

Soit ABCD un rectangle. La proposition

«l’angle ÂBC est droit et les diagonales [AC] et [BD] se coupent en leur milieu»

est vraie.
Soit ABC un triangle. La proposition

«AB > AC + BC et ÂBC + ĈAB + B̂CA = π»

est fausse.

Définition 1.4 Disjonction

A deux propositions P et Q, on peut associer la disjonction P ou Q qui est

• vraie si l’une au moins des deux propositions P ou Q est vraie ;

• fausse si les deux propositions P et Q sont fausses.

Table de vérité de la disjonction

P Q P ou Q
V V V
V F V
F V V
F F F

Remarque. Le «ou» considéré ici est un «ou» non exclusif. La proposition P ou Q est vraie si l’une au moins des deux
propositions P ou Q est vraie et non si exactement une des propositions est vraie.

Exemple 1.3

Soit ABC un triangle. La proposition

«AB > AC + BC ou ÂBC + ĈAB + B̂CA = π»

est vraie.

1.3 Implication et équivalence

Définition 1.5 Implication

A deux propositions P et Q, on peut associer la proposition P ⟹ Q qui est

• vraie si P est fausse ou si P et Q sont vraies ;

• fausse si P est vraie et Q fausse.
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Table de vérité de l’implication

P Q P ⟹ Q
V V V
V F F
F V V
F F V

Remarque. Si P et P ⟹ Q sont vraies, alors nécessairement Q est vraie.

Remarque. L’implication Q ⟹ P s’appelle la réciproque de l’implication P ⟹ Q. Si une implication est vraie, sa
réciproque n’est pas forcément vraie.

Exemple 1.4

Soient 𝑎 et 𝑏 deux réels. Alors 𝑎 = 𝑏 ⟹ 𝑎2 = 𝑏2 est vraie mais 𝑎2 = 𝑏2 ⟹ 𝑎 = 𝑏 est fausse en général.

Définition 1.6 Équivalence

A deux propositions P et Q, on peut associer la proposition P ⟺ Q qui est

• vraie si P et Q sont vraies ou si P et Q sont fausses ;

• fausse sinon.

Table de vérité de l’équivalence

P Q P ⟺ Q
V V V
V F F
F V F
F F V

Exemple 1.5

Soient 𝑎 et 𝑏 deux réels. Alors 𝑎 = 𝑏 ⟺ 𝑒𝑎 = 𝑒𝑏.

1.4 Formule propositionnelle

Définition 1.7 Formule propositionnelle

On appelle formule propositionnelle une combinaison de propositions logiques et de connecteurs logiques.

Définition 1.8 Tautologie

Une formule propositionnelle est appelée une tautologie si elle est vraie quelques soient les valeurs de vérité des propo-
sitions logiques qui la composent.
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Exemple 1.6

Si P est une proposition logique, P ou (nonP) est une tautologie.

Notation 1.1

Si F et G sont des formules propositionnelles, on notera F ≡ G si la proposition F ⟺ G est une tautologie.

Proposition 1.1 Reformulations

Soient P et Q des propositions logiques.

• (P ⟹ Q) ≡ ((nonP) ou Q).

• (P ⟺ Q) ≡ ((P ⟹ Q) et (Q ⟹ P)).

• (P ou Q) ≡ ((nonP) ⟹ Q).

Exercice 1.1

Soient P et Q des propositions logiques. Montrer que (P et (P ⟹ Q)) ⟹ Q est une tautologie.

1.5 Conditions nécessaires et/ou suffisantes
Conditions nécessaires et conditions suffisantes

Soient P et Q deux propositions.

• On dit que Q est une condition nécessaire pour avoir P si, dès que P est vraie alors nécessairement forcément Q est
vraie. Autrement dit, P ⟹ Q est vraie.

• On dit que Q est une condition suffisante pour avoir P s’il suffit que Q soit vraie pour que P soit vraie. Autrement
dit, Q ⟹ P est vraie.

• On dit queQ est une condition nécessaire et suffisante pour avoir P quand P est vraie si et seulement siQ est vraie.
Autrement dit, P ⟺ Q est vraie.

Exercice 1.2

Soit 𝑥 ∈ ℝ. La proposition «𝑥 ≥ 1» est-elle une condition nécessaire de la proposition «𝑥2+𝑥+2 ≥ 3»? Même question
avec suffisante.

1.6 Règles de calcul propositionnel

Proposition 1.2 Distributivité

Soient P, Q et R trois propositions logiques. Alors on a :

• ((P ou Q) et R) ≡ ((P et R) ou (Q et R))

• ((P et Q) ou R) ≡ ((P ou R) et (Q ou R))

Remarque. On dit que la conjonction (resp. la disjonction) est distributive sur la disjonction (resp. conjonction).
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Exemple 1.7

{
𝑥2 = 1
𝑦 = −3

⟺ {
𝑥 = 1 ou 𝑥 = −1

𝑦 = −3

⟺ ({
𝑥 = 1
𝑦 = −3

ou {
𝑥 = −1
𝑦 = −3

)

Proposition 1.3 Négation

Soient P et Q deux propositions logiques. Alors on a :

• non(P et Q) ≡ ((nonP) ou (nonQ))

• non(P ou Q) ≡ ((nonP) et (nonQ))

• non(P ⟹ Q) ≡ (P et (nonQ))

Exemple 1.8

La négation de la proposition −1 ≤ 𝑥 ≤ 2 est 𝑥 < −1 ou 𝑥 > 2.

Exemple 1.9

Soient P la proposition «Il y a de la fumée» et Q la proposition «Il y a du feu». Le célèbre proverbe «Il n’y a pas de fumée
sans feu» se traduit par P ⟹ Q. Sa négation est «Il y a de la fumée et il n’y a pas de feu» qui se traduit par Pet (nonQ).

1.7 En pratique

Méthode Montrer qu’une implication est vraie

Pour montrer que P ⟹ Q est vraie, il suffit de montrer que si P est vraie, alors Q est vraie.

Remarque. La notation logique P ⟹ Q correspond en français à la phrase «si P alors Q».

Attention!� L’implication P ⟹ Q peut être vraie sans que P et Q ne soient forcément vraies.
Quand on vous demande de montrer que l’implication P ⟹ Q est vraie, il ne s’agit nullement de prouver que P ou Q
sont vraies mais que si P est vraie, alors Q est vraie.

Méthode Montrer qu’une équivalence est vraie

Pour montrer que P ⟺ Q est vraie, il suffit de montrer que si P est vraie, alors Q est vraie et que si Q est vraie, alors P
est vraie.

Remarque. La notation logique P ⟺ Q correspond en français à la phrase «P si et seulement si Q».
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Attention!� L’équivalence P ⟺ Q peut être vraie sans que P et Q ne soient forcément vraies.
Quand on vous demande de montrer que l’équivalence P ⟺ Q est vraie, il ne s’agit nullement de prouver que P ou Q
sont vraies mais que P est vraie si et seulement si Q est vraie.

En pratique, dans une rédaction, on n’emploiera jamais les symboles ⟹ et ⟺ . Le seul endroit où le symbole ⟺
est toléré, c’est dans les résolutions d’équations ou d’inéquations.
On préférera l’emploi de mots de français : conjonctions de coordination (mais, ou, et, donc, or, ni, car), conjonctions de
subordination (parce que, si, puisque, ...) ou adverbes (ainsi, cependant, ...).

2 Quantificateurs

2.1 Définition et exemples
• Le symbole ∀ signifie «pour tout», «quelque soit».

• Le symbole ∃ signifie «il existe».

• Le symbole ∃! signifie «il existe un unique».

On peut construire des propositions logiques (vraies ou fausses) à l’aide de ces quantificateurs.

Exemple 2.1

Quelques exemples de propositions avec quantificateurs.

• «∀𝑥 ∈ ℝ, 𝑥2 ≥ 0» est une proposition vraie,

• «∃𝑛 ∈ ℕ, 𝑛 < 0» est fausse,

• «∀𝑟 ∈ ℚ, ∃𝑝 ∈ ℕ, 𝑝𝑟 ∈ ℤ» est vraie,

• «∃𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ, 𝑥 ≤ 𝑛» est fausse.

Exemple 2.2

Soient 𝑓 et 𝑔 deux fonctions de ℝ dans ℝ. Alors 𝑓 = 𝑔 ⟺ ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑔(𝑥).

Attention!� L’ordre des quantificateurs est important : on ne peut pas permuter un ∀ et un ∃ sans changer le sens de la
proposition. Par contre, on peut changer l’ordre de plusieurs ∀ qui se suivent ou de plusieurs ∃ qui se suivent.

Exemple 2.3

On se convaincra de la pertinence de la remarque précédente en comparant les deux propositions suivantes (on note ℋ
l’ensemble des hommes et ℱ celui des femmes) :

∀ℎ ∈ ℋ, ∃𝑓 ∈ ℱ, 𝑓 est la mère de ℎ

autrement dit «tout homme à une mère» et

∃𝑓 ∈ ℱ, ∀ℎ ∈ ℋ, 𝑓 est la mère de ℎ

autrement dit «il existe une mère de tous les hommes».

http://lgarcin.github.io 6

http://lgarcin.github.io


© Laurent Garcin MP Dumont d’Urville

Exemple 2.4

Voici un exemple plus mathématique.
∀𝑥 ∈ ℝ, ∃𝑛 ∈ ℤ, 𝑛 ≥ 𝑥

est un proposition vraie.
∃𝑛 ∈ ℤ, ∀𝑥 ∈ ℝ, 𝑛 ≥ 𝑥

est une proposition fausse.

Exercice 2.1

Traduire en toutes lettres les huit propositions suivantes lorsque 𝑥 désigne un individu, 𝑦 un film et que 𝑝(𝑥, 𝑦) est la
proposition «L’individu 𝑥 a vu le film 𝑦».

1. ∀𝑥, ∀𝑦, 𝑝(𝑥, 𝑦) ;

2. ∃𝑥, ∀𝑦, 𝑝(𝑥, 𝑦) ;

3. ∃𝑦, ∀𝑥, 𝑝(𝑥, 𝑦) ;

4. ∀𝑥, ∃𝑦, 𝑝(𝑥, 𝑦) ;

5. ∃𝑥, ∃𝑦, 𝑝(𝑥, 𝑦) ;

6. ∃𝑦, ∃𝑥, 𝑝(𝑥, 𝑦) ;

7. ∀𝑦, ∃𝑥, 𝑝(𝑥, 𝑦).

Exercice 2.2

Soit 𝑓 une fonction de ℝ dans ℝ. Ecrire à l’aide de quantificateurs les propositions suivantes :

a. 𝑓 est l’application nulle.

b. 𝑓 ne s’annule pas sur ℝ.

c. 𝑓 n’est pas la fonction nulle.

d. 𝑓 s’annule sur ℝ.

e. 𝑓 est une fonction affine.

2.2 Négation d’une proposition avec quantificateurs

Méthode Négation d’une proposition avec quantificateurs

Pour nier une proposition contenant des quantificateurs, on change les ∀ en ∃ et réciproquement. La négation de

∀𝑥, ∃𝑦, P(𝑥, 𝑦)

est
∃𝑥, ∀𝑦,nonP(𝑥, 𝑦)
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Exemple 2.5

La négation de la proposition «tous les chats sont gris» n’est pas la proposition «aucun chat n’est gris» mais la proposition
«il existe un chat qui n’est pas gris». En effet, si 𝑥 désigne un chat, la proposition de départ peut s’écrire

∀𝑥, 𝑥 est gris.

Sa négation est donc
∃𝑥, 𝑥 n’est pas gris.

2.3 En pratique
• Quand on demande de prouver une proposition du type ∀𝑥 ∈ A, P(𝑥), la rédaction commence TOUJOURS par «Soit
𝑥 ∈ A». Cela signifie que l’on se donne un élément 𝑥 de A quelconque.

• Quand on demande de prouver une proposition du type ∃𝑥 ∈ A, P(𝑥), il suffit de trouver UN 𝑥 dans A tel que P(𝑥) est
vraie.

Exemple 2.6

Pour prouver que ∀𝑥, 𝑦 ∈ ℝ, ∃𝑧 ∈ ℝ, 𝑧 > 𝑥 + 𝑦, on commence la rédaction de la manière suivante : «Soient 𝑥, 𝑦 ∈ ℝ».
Maintenant que 𝑥 et 𝑦 sont fixés, il suffit de trouver 𝑧 supérieur à 𝑥+𝑦. Ici, nous avons le choix. On achève la démonstration
de la manière suivante : «Posons 𝑧 = 𝑥 + 𝑦 + 1. Alors 𝑧 > 𝑥 + 𝑦». Et c’est terminé !

3 Méthodes de démonstration

3.1 Raisonnement par implication
C’est le type de raisonnement standard. On sait qu’une proposition P est vraie et que l’implication P ⟹ Q est vraie. On

en déduit que Q est vraie. On répète ceci autant de fois que nécessaire jusqu’à aboutier à la proposition dont on veut montrer
qu’elle est vraie.
En pratique, la démonstration contiendra des mots comme «donc», «ainsi», etc...

Exemple 3.1

L’exercice suivant se résout par implication.

Soit 𝑓 une fonction paire dérivable sur ℝ.
Montrer que 𝑓′ est impaire.

𝑓 est paire donc pour tout 𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑓(−𝑥).
Donc pour tout 𝑥 ∈ ℝ, 𝑓′(𝑥) = −𝑓′(−𝑥) (car 𝑓 est dérivable).
Donc 𝑓′ est impaire.

Attention!� On évitera à tout prix ce genre d’erreur.

Soit ABC un triangle de côtés AB = 3, AC = 4 et BC = 5.
Si le triangle ABC est rectangle en A, alors BC2 = AB2 +AC2. Or AB2 +AC2 = 32 + 42 = 52 = BC2 donc

ABC est rectangle en A.

Autrement dit, si P ⟹ Q et Q sont vraies, alors P est vraie...
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3.2 Raisonnement par double implication
Pour montrer que P ⟺ Q est vraie, on suppose P vraie et on montre que Q est vraie et réciproquement. La démontration

se fait donc en deux temps : une première débutant par «Supposons P et montronsQ» et une seconde débutant par «Supposons
Q et montrons P». On passe ensuite de P à Q et de Q à P en utilisant à chaque fois des implications.

Exemple 3.2

On considère l’énoncé suivant.

Soit ABCD un quadrilatère.
Montrer que ABCD est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.

On montre les implications

«ABCD est un parallélogramme ⟹ [AC] et [BD] se coupent en leur milieu»

et

«[AC] et [BD] se coupent en leur milieu ⟹ ABCD est un parallélogramme»

Il y aura donc deux phases dans la démonstration, l’une commençant par

«Supposons que ABCD est un parallélogramme»

l’autre commençant par

«Supposons que [AC] et [BD] se coupent en leur milieu.

3.3 Raisonnement par équivalence
Pour montrer que P ⟺ Q est vraie, on peut également procéder en une seule étape. On passe alors de P àQ en utilisant à

chaque fois des équivalences. Cette méthode est plus courte que la précédente (une seule étape au lieu de deux) mais peut aussi
être plus fastidieuse puisqu’on doit vérifier que chaque enchaînement logique de la démonstration est bien une équivalence et
pas seulement une implication.
Le raisonnement par équivalence est généralement réservé à la résolution d’équations et d’inéquations. On lui préférera en
général le raisonnement par double implication.

Attention!� Dans 90% des cas, on vous demande de montrer des implications plutôt que des équivalences. Le raison-
nement par équivalence est donc souvent inutile et générateur d’erreurs logiques. En clair, je ne veux pas voir des copies
remplies de symboles ⟺ dont la plupart sont faux et inutiles.

Le raisonnement par équivalence permet de montrer qu’une proposition est vraie en montrant qu’elle est équivalente à une
proposition dont on sait déjà qu’elle est vraie.

Exemple 3.3

On souhaite montrer que pour tout (𝑥, 𝑦) ∈ ℝ2, 𝑥𝑦 ≤ 1
2(𝑥

2 + 𝑦2). On peut procéder de la manière suivante.
Soit (𝑥, 𝑦) ∈ ℝ2.

𝑥𝑦 ≤ 1
2(𝑥

2 + 𝑦2)

⟺ 2𝑥𝑦 ≤ 𝑥2 + 𝑦2

⟺0 ≤ 𝑥2 + 𝑦2 − 2𝑥𝑦
⟺ 0 ≤ (𝑥 − 𝑦)2

La dernière proposition étant vraie, la première l’est également.
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3.4 Raisonnement par l’absurde
Pour prouver qu’une proposition P est vraie, on montre que la proposition nonP est fausse : en pratique, on suppose que P

est fausse et on aboutit à une contradiction.

Exercice 3.1

Prouver que √2 est irrationnel.

3.5 Contraposée
On sait que (P ⟹ Q) ≡ (nonQ ⟹ nonP), donc pour montrer P ⟹ Q est vraie, on peut montrer que

nonQ ⟹ nonP est vraie : en pratique, on suppose que nonQ est vraie et on montre que nonP est vraie.

Exercice 3.2

Soit 𝑎 ∈ ℝ. Montrer que
(∀ε > 0, |𝑎| ≤ ε) ⟹ 𝑎 = 0

Exercice 3.3

Soit 𝑛 ∈ ℕ. Montrer que si 𝑛2 − 1 n’est pas divisible par 8, alors 𝑛 est pair.

3.6 Alternative
Pour montrer P ou Q est vraie, il est nécessaire et suffisant de montrer (nonP) ⟹ Q. La rédaction est la suivante :

«Supposons que P est fausse et montrons qu’alors Q est nécessairement vraie.

Exercice 3.4

Soit 𝑥 ∈ ℝ. Montrer que 𝑥2 ≥ 1 ou (𝑥 − 2)2 ≥ 1.

3.7 Disjonction des cas
On veut montrer que P ⟹ Q est vraie et on sait que P ⟺ (P1 ou P2). Il est alors équivalent de montrer que

(P1 ⟹ Q) et (P2 ⟹ Q) est vraie. On sépare l’hypothèse de départ P en différents cas possibles P1 et P2.
Remarque. On a considéré une disjonction en deux cas par souci de simplification mais on peut évidemment considérer une
disjonction en plus de deux cas.

Exercice 3.5

Montrer que si 𝑛 ∈ ℕ, alors 𝑛(𝑛 + 1)
2 ∈ ℕ.

3.8 Récurrence
3.8.1 Récurrence simple

On considère une proposition qui dépend d’un entier 𝑛 notée HR(𝑛). Cette proposition est appelée l’hypothèse de récur-
rence. La méthode est alors la suivante :

Initialisation On montre que la proposition HR(𝑛0) est vraie pour un certain 𝑛0 ∈ ℕ (bien souvent 𝑛0 = 0).

Hérédité On montre HR(𝑛) ⟹ HR(𝑛 + 1) est vraie pour tout 𝑛 ≥ 𝑛0. On rédige de la manière suivante :
«On suppose HR(𝑛) pour un certain 𝑛 ≥ 𝑛0 et on montre HR(𝑛 + 1)».
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Conclusion Par principe de récurrence, HR(𝑛) est vraie pour tout 𝑛 ≥ 𝑛0.

Remarque. Dans la phase d’hérédité, on peut également montrer queHR(𝑛−1) ⟹ HR(𝑛) est vraie pour tout 𝑛 ≥ 𝑛0+1.

Exemple 3.4

Soit (𝑢𝑛) une suite réelle de premier terme 𝑢0 = 1 et telle que 𝑢𝑛+1 ≤
1
2𝑢𝑛 pour tout 𝑛 ∈ ℕ.

On souhaite montrer que 𝑢𝑛 ≤
1
2𝑛 pour tout 𝑛 ∈ ℕ. On définit l’hypothèse de récurrence HR(𝑛) : «𝑢𝑛 ≤

1
2𝑛 ».

Initialisation HR(0) est vraie puisque 𝑢0 = 1 ≤ 1
20 .

Hérédité Supposons HR(𝑛) vraie pour un certain 𝑛 ∈ ℕ. Alors 𝑢𝑛 ≤ 1
2𝑛 . Puis 12𝑢𝑛 ≤ 1

2𝑛+1 . Or 𝑢𝑛+1 ≤
1
2𝑢𝑛 donc

𝑢𝑛+1 ≤
1

2𝑛+1 . Ainsi HR(𝑛 + 1) est vraie.

Conclusion Par récurrence, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ. Autrement dit, 𝑢𝑛 ≤
1
2𝑛 pour tout 𝑛 ∈ ℕ.

Remarque. On peut éventuellement s’affranchir de nommer explicitement l’hypothèse de récurrence. Le raisonnement pré-
cédent peut également se rédiger de la manière suivante.

Initialisation 𝑢0 = 1 ≤ 1
20 .

Hérédité Supposons que 𝑢𝑛 ≤
1
2𝑛 pour un certain 𝑛 ∈ ℕ. Alors 12𝑢𝑛 ≤

1
2𝑛+1 . Or 𝑢𝑛+1 ≤

1
2𝑢𝑛 donc 𝑢𝑛+1 ≤

1
2𝑛+1 .

Conclusion Par récurrence, 𝑢𝑛 ≤
1
2𝑛 pour tout 𝑛 ∈ ℕ.

Attention!� Dans l’hypothèse de récurrence HR(𝑛) ne doit jamais figurer «∀𝑛» ou «pour tout 𝑛» : l’hypothèse de récur-
rence porte sur un seul entier 𝑛 à la fois.
Dans la phase d’hérédité, je ne veux jamais voir écrit : «on suppose HR(𝑛) pour tout 𝑛 ∈ ℕ». Ceci signifie que vous
supposez ce que vous voulez montrer.
Ces deux erreurs montrent que vous n’avez strictement rien compris au principe de récurrence.
La conclusion est le seul endroit où doit figurer «∀𝑛» ou «pour tout 𝑛».

Attention!� Si dans la phase d’hérédité, l’hypothèse de récurrence n’est pas employée, c’est que la démonstration par
récurrence est INUTILE.
Supposons par exemple que l’on veuille montrer que 2𝑛+1 est pair pour tout 𝑛 ∈ ℕ. Voilà le raisonnement par récurrence
à NE PAS FAIRE.

Initialisation 20+1 = 2 est pair.

Hérédité Supposons 2𝑛+1 pair pour un certain 𝑛 ∈ ℕ. Alors 2𝑛+2 = 2 × 2𝑛+1 est pair. On n’a pas utilisé l’hypothèse
de récurrence !

Conclusion 2𝑛+1 est pair pour tout 𝑛 ∈ ℕ.

Evidemment la bonne démonstration tient en une ligne.
Soit 𝑛 ∈ ℕ. Alors 2𝑛+1 = 2 × 2𝑛 est pair.

3.8.2 Récurrence double

Il existe un autre principe de récurrence appelée récurrence double.
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Initialisation On montre que les propositionHR(𝑛0) etHR(𝑛0+1) sont vraies pour un certain 𝑛0 ∈ ℕ (bien souvent 𝑛0 = 0).

Hérédité On montre HR(𝑛) et HR(𝑛 + 1) ⟹ HR(𝑛 + 2) est vraie pour tout 𝑛 ≥ 𝑛0. On rédige de la manière suivante :
«On suppose HR(𝑛) et HR(𝑛 + 1) pour un certain 𝑛 ≥ 𝑛0 et on montre HR(𝑛 + 2)».

Conclusion Par principe de récurrence double, HR(𝑛) est vraie pour tout 𝑛 ≥ 𝑛0.

Remarque. On peut aussi se ramener à une récurrence simple en changeant l’hypothèse de récurrenceHR(𝑛) en une hypothèse
de récurrence HR′(𝑛) valant HR(𝑛) et HR(𝑛 + 1).

Attention!� Il faut initialiser en démontrant la propriété pour les deux premiers rangs.

Exemple 3.5

Soit (𝑢𝑛)𝑛∈ℕ la suite définie par 𝑢1, 𝑢2 = 2 et : ∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 𝑢𝑛+1 + 𝑢𝑛. On souhaite montrer : ∀𝑛 ∈ ℕ∗, 𝑢𝑛 ≥ 𝑛.

Première version On définit l’hypothèse de récurrence HR(𝑛) : «𝑢𝑛 ≥ 𝑛».

Initialisation 𝑢1 = 1 ≥ 1 et 𝑢2 = 2 ≥ 2 donc HR(1) et HR(2) sont vraies.
Hérédité On suppose HR(𝑛) et HR(𝑛 + 1) vraies pour un certain 𝑛 ∈ ℕ∗. Alors 𝑢𝑛 ≥ 𝑛 et 𝑢𝑛+1 ≥ 𝑛 + 1 puis

𝑢𝑛+2 = 𝑢𝑛+1 + 𝑢𝑛 ≥ 2𝑛 + 1 ≥ 𝑛 + 2 car 𝑛 ≥ 1. Ainsi HR(𝑛 + 2) est vraie.
Conclusion Par récurrence double, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ∗. Autrement dit, 𝑢𝑛 ≥ 𝑛 pour tout 𝑛 ∈ ℕ∗.

Deuxième version On définit l’hypothèse de récurrence HR(𝑛) : «𝑢𝑛 ≥ 𝑛 et 𝑢𝑛+1 ≥ 𝑛 + 1».

Initialisation 𝑢1 = 1 ≥ 1 et 𝑢2 = 2 ≥ 2 donc HR(1) sont vraies.
Hérédité On supposeHR(𝑛) vraie pour un certain 𝑛 ∈ ℕ∗. Alors 𝑢𝑛 ≥ 𝑛 et 𝑢𝑛+1 ≥ 𝑛+1 puis 𝑢𝑛+2 = 𝑢𝑛+1+𝑢𝑛 ≥

2𝑛 + 1 ≥ 𝑛 + 2 car 𝑛 ≥ 1. Puisque l’on a déjà 𝑢𝑛+1 ≥ 𝑛 + 1, HR(𝑛 + 1) est vraie.
Conclusion Par récurrence simple, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ∗. A fortiori, 𝑢𝑛 ≥ 𝑛 pour tout 𝑛 ∈ ℕ∗.

Troisième version Sans expliciter l’hypothèse de récurrence.

Initialisation 𝑢1 = 1 ≥ 1 et 𝑢2 = 2 ≥ 2.
Hérédité On suppose que 𝑢𝑛 ≥ 𝑛 et 𝑢𝑛+1 ≥ 𝑛+1 pour un certain 𝑛 ∈ ℕ∗. Alors 𝑢𝑛+2 = 𝑢𝑛+1+𝑢𝑛 ≥ 2𝑛+1 ≥ 𝑛+2

car 𝑛 ≥ 1. Ainsi HR(𝑛 + 2) est vraie.
Conclusion Par récurrence double, 𝑢𝑛 ≥ 𝑛 pour tout 𝑛 ∈ ℕ∗.

3.8.3 Récurrence forte

Il existe encore un autre principe de récurrence appelé récurrence forte.

Initialisation On montre que la proposition HR(𝑛0) est vraie pour un certain 𝑛0 ∈ ℕ (bien souvent 𝑛0 = 0).

Hérédité On montre (HR(𝑛0) et HR(𝑛0 + 1) et ⋯ et HR(𝑛 − 1) et HR(𝑛)) ⟹ HR(𝑛+1) est vraie pour tout 𝑛 ≥ 𝑛0. On
rédige de la manière suivante :
«Soit 𝑛 ≥ 𝑛0. On suppose HR(𝑘) pour tout 𝑘 ≤ 𝑛 et on montre HR(𝑛 + 1)».

Conclusion Par principe de récurrence forte, HR(𝑛) est vraie pour tout 𝑛 ≥ 𝑛0.

Remarque. On peut aussi se ramener à une récurrence simple en changeant l’hypothèse de récurrenceHR(𝑛) en une hypothèse
de récurrence HR′(𝑛) valant HR(𝑛0) et HR(𝑛0 + 1) et ⋯ et HR(𝑛 − 1) et HR(𝑛).
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Exemple 3.6

On considère la suite définie par 𝑢0 = 1 et : ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑛. On souhaite montrer que 𝑢𝑛 ∈ ℕ pour
tout 𝑛 ∈ ℕ.

Première version On définit l’hypothèse de récurrence HR(𝑛) : «𝑢𝑛 ∈ ℕ».

Initialisation On a 𝑢0 = 1 ∈ ℕ donc HR(0) est vraie.
Hérédité On suppose HR(𝑘) vraie pour tout 𝑘 ∈ J0, 𝑛K pour un certain 𝑛 ∈ ℕ. Alors 𝑢0,… , 𝑢𝑛 sont des entiers

naturels. Ainsi 𝑢𝑛+1 est une somme d’entiers naturels donc un entier naturel. Ainsi HR(𝑛 + 1) est vraie.
Conclusion Par récurrence forte, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ i.e. 𝑢𝑛 ∈ ℕ pour tout 𝑛 ∈ ℕ.

Deuxième version On définit l’hypothèse de récurrence HR(𝑛) : «∀𝑘 ∈ J0, 𝑛K, 𝑢𝑘 ∈ ℕ».

Initialisation On a 𝑢0 = 1 ∈ ℕ donc HR(0) est vraie.
Hérédité On suppose HR(𝑛) pour un certain 𝑛 ∈ ℕ. Alors 𝑢0,… , 𝑢𝑛 sont des entiers naturels. Ainsi 𝑢𝑛+1 est une

somme d’entiers naturels donc un entier naturel. Ainsi HR(𝑛 + 1) est vraie.
Conclusion Par récurrence simple, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ i.e. 𝑢𝑛 ∈ ℕ pour tout 𝑛 ∈ ℕ.

Troisième version Sans expliciter l’hypothèse de récurrence.

Initialisation On a 𝑢0 = 1 ∈ ℕ.
Hérédité Supposons ∀𝑘 ∈ J0, 𝑛K, 𝑢𝑘 ∈ ℕ pour un certain 𝑛 ∈ ℕ. Ainsi 𝑢𝑛+1 est une somme d’entiers naturels

donc un entier naturel.
Conclusion Par récurrence forte, HR(𝑛) est vraie pour tout 𝑛 ∈ ℕ i.e. 𝑢𝑛 ∈ ℕ pour tout 𝑛 ∈ ℕ.

Exercice 3.6

Soit (𝑢𝑛) la suite définie par 𝑢0 = 1 et 𝑢𝑛+1 =
𝑛
∑
𝑘=0

𝑢𝑘 pour tout 𝑛 ∈ ℕ. Montrer que 𝑢𝑛 = 2𝑛−1 pour tout 𝑛 ∈ ℕ∗.

3.9 Analyse-synthèse
On suppose le problème résolu et on en déduit des conditions nécessaires : c’est la phase d’analyse. On montre que ces

conditions sont en fait suffisantes et on résout le problème : c’est la phase de synthèse.

Exemple 3.7

On souhaite montrer que toute fonction de ℝ dans ℝ est la somme d’une fonction paire et d’une fonction impaire.
Tout d’abord, on se donne une fonction 𝑓 de ℝ dans ℝ.

Analyse On suppose que𝑓 est la somme d’une fonction paire 𝑔 et d’une fonction impaire ℎ. Alors pour tout 𝑥 ∈ ℝ,𝑓(𝑥) =
𝑔(𝑥) + ℎ(𝑥). On a donc également, 𝑓(−𝑥) = 𝑔(−𝑥) + ℎ(−𝑥) pour tout 𝑥 ∈ ℝ. Mais 𝑔 et ℎ étant respectivement

paire et impaire, 𝑓(−𝑥) = 𝑔(𝑥) − ℎ(𝑥) pour tout 𝑥 ∈ ℝ. On en déduit que nécessairement, 𝑔(𝑥) = 𝑓(𝑥) + 𝑓(−𝑥)
2

et ℎ(𝑥) =
𝑓(𝑥) − 𝑓(−𝑥)

2 pour tout 𝑥 ∈ ℝ.

Synthèse Posons donc 𝑔(𝑥) =
𝑓(𝑥) + 𝑓(−𝑥)

2 et ℎ(𝑥) =
𝑓(𝑥) − 𝑓(−𝑥)

2 pour tout 𝑥 ∈ ℝ. On vérifie alors que

• 𝑓 = 𝑔 + ℎ puisque pour tout 𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) ;
• 𝑔 est paire puisque pour tout 𝑥 ∈ ℝ, 𝑔(−𝑥) = 𝑔(𝑥) ;
• ℎ est impaire puisque pour tout 𝑥 ∈ ℝ, ℎ(−𝑥) = −ℎ(𝑥).

𝑓 est donc bien la somme d’une fonction paire et d’une fonction impaire.
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Remarque. On a même prouvé l’unicité de la fonction paire et de la fonction impaire.
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