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Séries numériques

𝕂 désigne le corps ℝ ou ℂ.

1 Généralités

1.1 Définitions

Définition 1.1 Série

Soit (𝑢𝑛)𝑛≥𝑛0 une suite numérique (i.e. à valeurs dans 𝕂). On appelle série de terme général 𝑢𝑛 la suite (S𝑛)𝑛≥𝑛0 où

∀𝑛 ≥ 𝑛0, S𝑛 =
𝑛
∑
𝑘=𝑛0

𝑢𝑘

Cette série est noté ∑
𝑛≥𝑛0

𝑢𝑛 ou plus simplement ∑𝑢𝑛 s’il n’y a pas ambiguïté sur le premier terme.

Pour 𝑛 ≥ 𝑛0, S𝑛 est appelée somme partielle de rang 𝑛 de cette série.

Remarque. Une série est donc un cas particulier de suite.

Exemple 1.1

On appelle série arithmétique toute série dont le terme général est le terme général d’une suite arithmétique.

Par exemple, ∑
𝑛≥0

𝑛 est une série arithmétique. Sa somme partielle de rang 𝑛 est 𝑛(𝑛 + 1)
2 .

Exemple 1.2

On appelle série géométrique toute série dont le terme général est le terme général d’une suite géométrique. Par exemple,
∑
𝑛≥0

2𝑛 est une série géométrique. Sa somme partielle de rang 𝑛 est 2𝑛 − 1.

Exemple 1.3

On appelle série harmonique la série ∑
𝑛≥1

1
𝑛 .

Exemple 1.4

On appelle série télescopique toute série dont le terme général est de la forme 𝑢𝑛 = 𝑣𝑛 − 𝑣𝑛−1. La somme partielle de
rang 𝑛 de la série ∑

𝑛≥1
𝑢𝑛 est 𝑣𝑛 − 𝑣0.
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Remarque. La suite des sommes partielles de la série ∑
𝑛≥𝑛0

𝑢𝑛 est croissante (resp. décroissante) si et seulement si la

suite (𝑢𝑛)𝑛≥𝑛0+1 est positive (resp. négative).

1.2 Nature et somme d’une série

Définition 1.2 Convergence et divergence

On dit qu’une série converge (resp. diverge) si la suite de ses sommes partielles converge (resp. diverge).

Remarque. La convergence d’une série ne dépend pas du premier rang i.e. les séries ∑
𝑛≥𝑛0

𝑢𝑛 et ∑
𝑛≥𝑛1

𝑢𝑛 sont de même

nature.

Définition 1.3 Somme d’une série

Si la série ∑
𝑛≥𝑛0

𝑢𝑛 converge, la limite de la suite des sommes partielles est appelée somme de la série et est notée
+∞
∑
𝑛=𝑛0

𝑢𝑛.

Remarque. On a donc
+∞
∑
𝑛=𝑛0

𝑢𝑛 = lim
𝑛→+∞

𝑛
∑
𝑘=𝑛0

𝑢𝑘.

Remarque. Aussi surprenant cela puisse-t-il paraître, une somme infinie de termes, fussent-ils tous positifs, peut se
révéler être finie.

Attention!� La notation
+∞
∑
𝑛=𝑛0

𝑢𝑛 n’a de sens que si la série ∑
𝑛≥𝑛0

𝑢𝑛 converge. Il faut donc prouver la convergence de la

série avant d’employer cette notation.

Proposition 1.1 Lien suite/série

La série télescopique ∑(𝑢𝑛 − 𝑢𝑛−1) et la suite (𝑢𝑛) sont de même nature (i.e. elles convergent toutes les deux ou elles
divergent toutes les deux).

De plus, si (𝑢𝑛) converge vers une limite ℓ,
+∞
∑
𝑛=𝑛0

𝑢𝑛 − 𝑢𝑛−1 = ℓ − 𝑢𝑛0−1.

Exercice 1.1

Nature et somme de la série ∑
𝑛≥1

1
𝑛(𝑛 + 1)

.

Remarque. On appelle série de Taylor une série de la forme ∑
𝑛∈ℕ

𝑓(𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛. On ne peut a priori rien dire sur ce

type de série mais dans le cas où elle converge vers 𝑓(𝑥) (attention, ce n’est pas toujours le cas), on peut éventuellement
le montrer grâce à l’inégalité de Taylor-Lagrange.
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Exercice 1.2 ★★★ Taylor-Lagrange

A l’aide de l’inégalité de Taylor-Lagrange prouver la convergence et déterminer la somme des séries suivantes

1. ∑
𝑛≥0

𝑥𝑛
𝑛! pour 𝑥 ∈ ℝ ;

2. ∑
𝑛∈ℕ

(−1)𝑛𝑥2𝑛

(2𝑛)!
et ∑

𝑛∈ℕ

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!
pour 𝑥 ∈ ℝ.

3. ∑
𝑛≥1

(−1)𝑛−1𝑥𝑛
𝑛 pour 𝑥 ∈ [0, 1].

Méthode Changement d’indice

Il est possible d’effectuer des changements d’indices dans la somme d’une série. C’est même plus simple que pour une
somme finie. Par exemple, supposons que la série ∑

𝑛∈ℕ
𝑢𝑛 converge. Effectuons par exemple le changement d’indice 𝑝 =

𝑛 + 1.
+∞
∑
𝑛=0

𝑢𝑛 = lim
N→+∞

N
∑
𝑛=0

𝑢𝑛 = lim
N→+∞

N+1
∑
𝑝=1

𝑢𝑝−1 =
+∞
∑
𝑝=1

𝑢𝑝−1

En pratique, on ne passe pas par la limite des sommes partielles et on écrit directement
+∞
∑
𝑛=0

𝑢𝑛 =
+∞
∑
𝑝=1

𝑢𝑝−1.

1.3 Opérations sur les séries
La proposition suivante n’est qu’une conséquence de la linéarité de la limite.

Proposition 1.2 Linéarité de la somme

Soient ∑
𝑛≥𝑛0

𝑢𝑛 et ∑
𝑛≥𝑛0

𝑣𝑛 deux séries numériques convergentes et (λ, μ) ∈ 𝕂2. Alors la série ∑
𝑛≥𝑛0

(λ𝑢𝑛 + μ𝑣𝑛) converge

et
+∞
∑
𝑛≥𝑛0

(λ𝑢𝑛 + μ𝑣𝑛) = λ
+∞
∑
𝑛≥𝑛0

𝑢𝑛 + μ
+∞
∑
𝑛≥𝑛0

𝑣𝑛

Remarque. En termes plus savants, les séries numériques convergentes forment un 𝕂-espace vectoriel et l’application
qui à une série convergente associe sa somme est une forme linéaire sur cet espace vectoriel.

Attention!� La réciproque est fausse en général. Par exemple, si ∑(𝑢𝑛 + 𝑣𝑛) converge, on ne peut rien dire de ∑𝑢𝑛 et
∑𝑣𝑛 (prendre par exemple, 𝑢𝑛 = −𝑣𝑛 = 2𝑛).

On évitera à tout prix d’écrire des égalités du type
+∞
∑
𝑛=𝑛0

(𝑢𝑛 + 𝑣𝑛) =
+∞
∑
𝑛=𝑛0

𝑢𝑛+
+∞
∑
𝑛=𝑛0

𝑣𝑛 avant d’avoir prouvé la convergence

des séries ∑
𝑛≥𝑛0

𝑢𝑛 et ∑
𝑛≥𝑛0

𝑣𝑛.
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Proposition 1.3

Soit ∑
𝑛≥𝑛0

𝑢𝑛 une série complexe. Alors ∑
𝑛≥𝑛0

𝑢𝑛 converge si et seulement si ∑
𝑛≥𝑛0

Re(𝑢𝑛) et ∑
𝑛≥𝑛0

Im(𝑢𝑛) convergent et dans

ce cas
+∞
∑
𝑛=𝑛0

𝑢𝑛 =
+∞
∑
𝑛=𝑛0

Re(𝑢𝑛) + 𝑖
+∞
∑
𝑛=𝑛0

Im(𝑢𝑛)

En particulier

Re (
+∞
∑
𝑛=𝑛0

𝑢𝑛) =
+∞
∑
𝑛=𝑛0

Re(𝑢𝑛) Im (
+∞
∑
𝑛=𝑛0

𝑢𝑛) =
+∞
∑
𝑛=𝑛0

Im(𝑢𝑛)

Exercice 1.3

Soit 𝑥 ∈ ℝ. Montrer que la série ∑
𝑛∈ℕ

(𝑖𝑥)𝑛
𝑛! converge et a pour somme 𝑒𝑖𝑥. En déduire la convergence des séries

∑
𝑛∈ℕ

(−1)𝑛𝑥2𝑛

(2𝑛)!
et ∑

𝑛∈ℕ

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!
et leurs sommes.

Proposition 1.4 Conjugaison

Soit ∑
𝑛≥𝑛0

𝑢𝑛 une série numérique. Alors les séries ∑
𝑛≥𝑛0

𝑢𝑛 et ∑
𝑛≥𝑛0

𝑢𝑛 sont de même nature.

En cas de convergence,
+∞
∑
𝑛=𝑛0

𝑢𝑛 =
+∞
∑
𝑛=𝑛0

𝑢𝑛.

1.4 Divergence grossière

Proposition 1.5

Soit ∑𝑢𝑛 une série convergente. Alors la suite (𝑢𝑛) converge vers 0.

Attention!� La réciproque est absolument fausse. Par exemple, la suite de terme général 1𝑛 converge vers 0 tandis que
la série harmonique diverge.

Définition 1.4 Divergence grossière

Une série ∑𝑢𝑛 est dite grossièrement divergente lorsque la suite (𝑢𝑛) ne converge pas vers 0.

Exemple 1.5

Si |𝑞| ≥ 1, la série ∑𝑞𝑛 diverge grossièrement.

La série ∑ 1
𝑛 ne diverge pas grossièrement.
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1.5 Séries usuelles

Proposition 1.6 Série géométrique

Soit 𝑞 ∈ ℂ. La série géométrique ∑𝑞𝑛 converge si et seulement si |𝑞| < 1.

Dans ce cas,
+∞
∑
𝑛=0

𝑞𝑛 = 1
1 − 𝑞 .

Exercice 1.4

Nature et somme de la série ∑
𝑛∈ℕ

𝑛𝑞𝑛.

Proposition 1.7 Série exponentielle

Soit 𝑧 ∈ ℂ. La série ∑ 𝑧𝑛
𝑛! converge et

+∞
∑
𝑛=0

𝑧𝑛
𝑛! = 𝑒𝑧.

1.6 Reste d’une série convergente

Définition 1.5 Reste d’une série convergente

Soit ∑
𝑛≥𝑛0

𝑢𝑛 une série convergente. Pour tout 𝑛 ≥ 𝑛0, la série ∑
𝑘≥𝑛+1

𝑢𝑘 est convergente et on appelle sa somme le reste

de rang 𝑛 de la série ∑
𝑛≥𝑛0

𝑢𝑛. Autrement dit, le reste de rang 𝑛 de la série ∑
𝑛≥𝑛0

𝑢𝑛 est
+∞
∑

𝑘=𝑛+1
𝑢𝑘.

Proposition 1.8

Soit ∑
𝑛≥𝑛0

𝑢𝑛 une série convergente. Alors pour tout 𝑛 ≥ 𝑛0

+∞
∑
𝑘=𝑛0

𝑢𝑘 =
𝑛
∑
𝑘=𝑛0

𝑢𝑘 +
+∞
∑

𝑘=𝑛+1
𝑢𝑘

Remarque. Si on note S𝑛 la somme partielle de rang 𝑛, R𝑛 le reste de rang 𝑛 et S la somme de la série, on a donc
S𝑛 + R𝑛 = S pour tout 𝑛 ≥ 𝑛0.

Exemple 1.6

Lorsque |𝑞| < 1, le reste de rang 𝑛 de la série ∑
𝑛∈ℕ

𝑞𝑛 est 𝑞
𝑛+1

1 − 𝑞 .

Corollaire 1.1

La suite des restes d’une série convergente converge vers 0.
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2 Comparaison à une intégrale

Méthode Comparaison à une intégrale

On considère une série ∑
𝑛≥0

𝑓(𝑛) où 𝑓 est une fonction continue et monotone sur ℝ+. On peut comparer les sommes

partielles S𝑛 à une intégrale pour déterminer la nature de la série. Si, par exemple, 𝑓 est croissante, on en déduit que pour
tout 𝑘 ∈ ℕ et 𝑡 ∈ [𝑘, 𝑘 + 1] :

𝑓(𝑘) ≤ 𝑓(𝑡) ≤ 𝑓(𝑘 + 1)

Puis par intégration sur [𝑘, 𝑘 + 1],

𝑓(𝑘) ≤ ∫
𝑘+1

𝑘
𝑓(𝑡) d𝑡 ≤ 𝑓(𝑘 + 1)

Enfin, en sommant l’inégalité de gauche pour 0 ≤ 𝑘 ≤ 𝑛 et celle de droite pour 0 ≤ 𝑘 ≤ 𝑛 − 1, on obtient via la relation
de Chasles

∫
𝑛

0
𝑓(𝑡) d𝑡 + 𝑓(0) ≤ S𝑛 ≤ ∫

𝑛+1

0
𝑓(𝑡) d𝑡

On a des résultats analogues lorsque 𝑓 est décroissante.
Les encadrements obtenus permettent éventuellement de déterminer un équivalent de la suite des sommes partielles.
Graphiquement, la méthode correspond à encadrer l’intégrale de 𝑓 sur un intervalle par une somme d’aires de rectangles
d’où le nom de méthode des rectangles.

Cas d’une fonction croissante Cas d’une fonction décroissante

En modifiant légèrement la technique, on peut également obtenir un encadrement et potentiellement un équivalent de la
suite des restes (en cas de convergence).

Remarque. Il ne s’agit pas de retenir des formules par cœur mais de retenir la méthode permettant d’obtenir des enca-
drements des sommes partielles et des restes.
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Exemple 2.1 Équivalent de la série harmonique

La fonction 𝑡 ↦ 1
𝑡 est décroissante sur ℝ∗

+. On en déduit que pour tout 𝑘 ∈ ℕ∗ et tout 𝑡 ∈ [𝑘, 𝑘 + 1],

1
𝑘 + 1 ≤

1
𝑡 ≤

1
𝑘

Par intégration,
1

𝑘 + 1 ≤ ∫
𝑘+1

𝑘

d𝑡
𝑡 ≤ 1

𝑘

En sommant convenablement, on obtient pour tout 𝑛 ∈ ℕ∗

∫
𝑛+1

1

d𝑡
𝑡 ≤

𝑛
∑
𝑘=1

1
𝑘 ≤ 1 +∫

𝑛

1

d𝑡
𝑡

ou encore

ln(𝑛 + 1) ≤
𝑛
∑
𝑘=1

1
𝑘 ≤ 1 + ln(𝑛)

L’inégalité de gauche permet de conclure que la série harmonique ∑ 1
𝑛 diverge.

L’encadrement permet même d’affirmer que donner un équivalent des sommes partielles
𝑛
∑
𝑘=1

1
𝑘 ∼ ln𝑛.

Proposition 2.1 Séries de Riemann

Soit α ∈ ℝ. La série ∑
𝑛≥1

1
𝑛α converge si et seulement si α > 1.

Remarque. Si α ≤ 0, la série ∑
𝑛≥1

1
𝑛α diverge grossièrement.

Remarque. Pour α > 1, on note ζ(α) =
+∞
∑
𝑛=1

1
𝑛α . La fonction ζ est appelée fonction ζ de Riemann.
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Exemple 2.2 Équivalent du reste de la série ∑ 1
𝑛2

La fonction 𝑡 ↦ 1
𝑡2 est décroissante sur ℝ∗

+. On en déduit que pour tout 𝑘 ∈ ℕ∗ et tout 𝑡 ∈ [𝑘, 𝑘 + 1],

1
(𝑘 + 1)2

≤ 1
𝑡2 ≤

1
𝑘2

Par intégration,
1

(𝑘 + 1)2
≤ ∫

𝑘+1

𝑘

d𝑡
𝑡2 ≤ 1

𝑘2

Mais en sommant l’encadrement précédent, on a également pour N > 𝑛 ≥ 1

∫
N+1

𝑛+1

d𝑡
𝑡2 ≤

N
∑

𝑘=𝑛+1

1
𝑘2 ≤ ∫

N

𝑛

d𝑡
𝑡2

ou encore
1

𝑛 + 1 −
1

N + 1 ≤
N
∑

𝑘=𝑛+1

1
𝑘2 ≤

1
𝑛 −

1
N

Par passage à la limite
1

𝑛 + 1 ≤
+∞
∑

𝑘=𝑛+1

1
𝑘2 ≤

1
𝑛

On obtient ainsi un équivalent de la suite des restes de la série ∑ 1
𝑛2 .

+∞
∑

𝑘=𝑛+1

1
𝑘2 ∼

𝑛→+∞

1
𝑛

Exercice 2.1

Déterminer un équivalent de la somme partielle de la série ∑
𝑛≥1

1
𝑛α lorsque α < 1 et un équivalent de son reste lorsque

α > 1.

3 Séries à termes positifs

Une série ∑𝑢𝑛 est dite à termes positifs si les 𝑢𝑛 sont positifs.

3.1 Résultats généraux
Le théorème de la limite monotone permet d’énoncer le résultat suivant.

Proposition 3.1

Une série à termes positifs converge si et seulement si la suite de ses sommes partielles est majorée.
Dans le cas contraire, elle diverge vers +∞.
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Corollaire 3.1

Soit ∑𝑢𝑛 et ∑𝑣𝑛 deux séries réelles telles que 0 ≤ 𝑢𝑛 ≤ 𝑣𝑛 à partir d’un certain rang.

(i) Si ∑𝑣𝑛 converge, alors ∑𝑢𝑛 converge.

(ii) Si ∑𝑢𝑛 diverge, alors ∑𝑣𝑛 diverge.

Remarque. En cas de convergence et si 𝑢𝑛 ≤ 𝑣𝑛 pour 𝑛 ≥ N, alors
+∞
∑
𝑛=N

𝑢𝑛 ≤
+∞
∑
𝑛=N

𝑣𝑛.

Exemple 3.1

La série ∑ arctan𝑛
𝑛2 converge.

La série ∑ ln𝑛
𝑛 diverge.

Méthode Comparaison série-intégrale : nature d’une série

On considère une série ∑
𝑛≥0

𝑓(𝑛) où 𝑓 est une fonction continue par morceaux, positive et décroissante sur ℝ+. On peut

déterminer la nature de la série ∑𝑓(𝑛) en comparant son terme général à une intégrale.
Donnons-nous 𝑛 ∈ ℕ. Pour tout 𝑡 ∈ [𝑛, 𝑛 + 1], 𝑓(𝑡) ≤ 𝑓(𝑛) puis en intégrant sur [𝑛, 𝑛 + 1],

∫
𝑛+1

𝑛
𝑓(𝑡) d𝑡 ≤ 𝑓(𝑛)

i.e.
0 ≤ F(𝑛 + 1) − F(𝑛) ≤ 𝑓(𝑛)

où F est une primitive de 𝑓. Si la suite (F(𝑛)) diverge, la série télescopique∑F(𝑛+1)−F(𝑛) diverge également et enfin,
la série ∑𝑓(𝑛) diverge par comparaison.
De la même manière, si on se donne 𝑛 ∈ ℕ∗, pour tout 𝑡 ∈ [𝑛 − 1, 𝑛], 𝑓(𝑛) ≤ 𝑓(𝑡) puis

0 ≤ 𝑓(𝑛) ≤ ∫
𝑛

𝑛−1
𝑓(𝑡) d𝑡 = F(𝑛) − F(𝑛 − 1)

Si la suite (F(𝑛)) converge, la série télescopique ∑F(𝑛)−F(𝑛−1) converge aussi et enfin, la série ∑𝑓(𝑛) converge par
comparaison.

Exemple 3.2

On souhaite déterminer la nature de la série ∑ 1
𝑛 ln2 𝑛

. On constate que 𝑡 ↦ 1
𝑡 ln2 𝑡

est décroissante sur ]1, +∞[. Ainsi
pour 𝑛 ≥ 3,

0 ≤ 1
𝑛 ln2 𝑛

≤ ∫
𝑛

𝑛−1

d𝑡
𝑡 ln2 𝑡

= − [ 1
ln 𝑡 ]

𝑛

𝑛−1
= 1

ln(𝑛 − 1)
− 1

ln𝑛

Comme la suite ( 1
ln𝑛) converge, la série télescopique ∑ 1

ln(𝑛 − 1)
− 1

ln𝑛 converge aussi et enfin, la série ∑ 1
𝑛 ln2 𝑛

converge par comparaison.
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Exemple 3.3

On souhaite déterminer la nature de la série ∑ 1
𝑛 ln𝑛 . On constate que 𝑡 ↦ 1

𝑡 ln 𝑡 est décroissante sur ]1, +∞[. Ainsi
pour 𝑛 ≥ 2,

0 ≤ ∫
𝑛+1

𝑛

d𝑡
𝑡 ln 𝑡 ≤

1
𝑛 ln𝑛

ou encore
0 ≤ ln(ln(𝑛 + 1)) − ln(ln𝑛) ≤ 1

𝑛 ln𝑛

Comme la suite (ln(ln𝑛)) diverge, la série télescopique∑ ln(ln(𝑛+1))− ln(ln𝑛) diverge aussi et enfin, la série∑ 1
𝑛 ln𝑛

diverge par comparaison.

3.2 Absolue convergence

Définition 3.1 Absolue convergence

Une série numérique (réelle ou complexe) ∑𝑢𝑛 est dite absolument convergente si ∑|𝑢𝑛| converge.

Théorème 3.1

Une série absolument convergente est convergente. Dans ce cas,
|
|
|

+∞
∑
𝑛=0

𝑢𝑛
|
|
|
≤

+∞
∑
𝑛=0

|𝑢𝑛|.

Attention!� La réciproque est fausse. La série ∑
𝑛≥1

(−1)𝑛+1
𝑛 converge tandis que la série ∑

𝑛≥1

1
𝑛 diverge.

Exemple 3.4

La série ∑ sin𝑛
𝑛2 converge absolument.

Exercice 3.1 Sommation d’Abel

Soient (𝑎𝑛)𝑛≥𝑛0 et (B𝑛)𝑛≥𝑛0 deux suites complexes. On définit deux suites (A𝑛)𝑛≥𝑛0 et (𝑏𝑛)𝑛≥𝑛0 de la manière suivante :

∀𝑛 ≥ 𝑛0, A𝑛 =
𝑛
∑
𝑘=𝑛0

𝑎𝑘, 𝑏𝑛 = B𝑛+1 − B𝑛

1. Montrer que
𝑛
∑
𝑘=𝑛0

𝑎𝑘B𝑘 = A𝑛B𝑛 −
𝑛−1
∑
𝑘=𝑛0

A𝑘𝑏𝑘 pour tout 𝑛 ≥ 𝑛0.

2. Utiliser la question précédente pour étudier la convergence de ∑
𝑛≥1

sin𝑛
𝑛 .

3. De manière générale, montrer que si (B𝑛) converge vers 0, si (A𝑛) est bornée et si ∑
𝑛≥𝑛0

𝑏𝑛 est absolument convergente,

alors ∑
𝑛≥𝑛0

𝑎𝑛B𝑛 est convergente.
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3.3 Relations de comparaison

Proposition 3.2

Soient∑𝑢𝑛 et∑𝑣𝑛 deux séries numériques. On suppose∑𝑣𝑛 à termes positifs à partir d’un certain rang. Si𝑢𝑛 = 𝒪(𝑣𝑛)
et si ∑𝑣𝑛 converge, alors ∑𝑢𝑛 converge absolument.

Remarque. Les résultats restent vrais si on remplace le 𝒪 par un 𝑜 puisque la négligabilité implique la domination.

Attention!� Encore une fois, il est essentielle que la série ∑𝑣𝑛 soit à termes positifs. Posons 𝑢𝑛 =
1
𝑛 et 𝑣𝑛 =

(−1)𝑛

√𝑛
.

La série ∑𝑣𝑛 converge et 𝑢𝑛 = 𝒪(𝑣𝑛) mais ∑𝑢𝑛 diverge.

Proposition 3.3

Soient ∑𝑢𝑛 et ∑𝑣𝑛 deux séries numériques dont l’une des deux est à termes positifs à partir d’un certain rang. Si
𝑢𝑛 ∼ 𝑣𝑛, alors ∑𝑢𝑛 et ∑𝑣𝑛 sont de même nature.

Remarque. Si (𝑢𝑛) et (𝑣𝑛) sont des suites réelles telles que 𝑢𝑛 ∼ 𝑣𝑛, alors 𝑢𝑛 et 𝑣𝑛 sont de même signe à partir d’un
certain rang.

Exemple 3.5

La série ∑𝑒−√𝑛 converge.

La série ∑ 1
√𝑛 ln𝑛

diverge.

La série ∑ 1
𝑛 sin 1𝑛 est convergente.

Attention!� Il est essentiel que les des deux séries soit à termes positifs (du moins à partir d’un certain rang).

Par exemple, en posant 𝑢𝑛 = (−1)𝑛

√𝑛
et 𝑣𝑛 = (−1)𝑛

√𝑛
+ 1
𝑛 , on a bien 𝑢𝑛 ∼ 𝑣𝑛 mais ∑𝑢𝑛 converge tandis que ∑𝑣𝑛

diverge.

Exercice 3.2 Règle de d’Alembert

Soit ∑
𝑛∈ℕ

𝑢𝑛 une série à termes strictement positifs.

1. Montrer que si la suite de terme général
𝑢𝑛+1
𝑢𝑛

admet une limite 𝑙 < 1, alors ∑
𝑛∈ℕ

𝑢𝑛 converge.

2. Montrer que si la suite de terme général
𝑢𝑛+1
𝑢𝑛

admet une limite 𝑙 > 1, alors ∑
𝑛∈ℕ

𝑢𝑛 diverge.

3. Montrer à l’aide de deux exemples que l’on ne peut pas conclure si la suite de terme général
𝑢𝑛+1
𝑢𝑛

admet 1 pour limite.

4. Étudier la nature de la série ∑
𝑛∈ℕ∗

𝑛!
𝑛𝑛 .
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3.4 Séries alternées

Proposition 3.4 Critère spécial des séries alternées

Soit (𝑢𝑛) une suite monotone (à partir d’un certain rang) et de limite nulle. Alors la série ∑(−1)𝑛𝑢𝑛 converge.

Remarque. Ce critère est utile pour montrer la convergence de série non absolument convergente. Il serait par exemple

ridicule d’invoquer ce résultat pour justifier la convergence de la série ∑
𝑛∈ℕ∗

(−1)𝑛

𝑛2 . Il suffit en effet de constater que

(−1)𝑛

𝑛2 =
𝑛→+∞

𝒪(
1
𝑛2 ).

Exemple 3.6

La série ∑
𝑛∈ℕ∗

(−1)𝑛
𝑛 est convergente.

Exemple 3.7

On souhaite étudier la convergence de la série ∑
𝑛∈ℕ∗

sin ((−1)
𝑛

𝑛 ).

Bien entendu, sin ((−1)
𝑛

𝑛 ) ∼
𝑛→+∞

(−1)𝑛
𝑛 et ∑

𝑛∈ℕ∗

(−1)𝑛
𝑛 converge car elle respecte le critère spécial des séries alternées.

Mais on ne peut pas utiliser le théorème de comparaison car il ne s’agit pas là de séries à termes positifs.
Néanmoins, comme sin𝑢 =

𝑢→0
𝑢 + 𝒪(𝑢3),

sin ((−1)
𝑛

𝑛 ) =
𝑛→+∞

(−1)𝑛
𝑛 + 𝒪(

1
𝑛3 )

La série ∑ (−1)𝑛
𝑛 converge car elle respecte le critère spécial des séries alternées et la série de Riemann ∑ 1

𝑛3 converge

également. On en déduit que la série ∑
𝑛∈ℕ∗

sin ((−1)
𝑛

𝑛 ) converge en tant que somme de deux séries convergentes.

Exercice 3.3

Déterminer la nature de la série ∑
𝑛∈ℕ

sin (π√𝑛2 + 1).

Proposition 3.5 Signe et majoration du reste d’une série alternée

Soit (𝑢𝑛)𝑛≥𝑛0 une suite monotone de limite nulle. On note R𝑛 le reste d’ordre 𝑛 de la série ∑
𝑛≥𝑛0

(−1)𝑛𝑢𝑛 i.e. R𝑛 =

+∞
∑

𝑘=𝑛+1
(−1)𝑘𝑢𝑘. Alors pour tout 𝑛 ≥ 𝑛0 − 1,

• R𝑛 est du signe de (−1)𝑛+1𝑢𝑛+1 ;

• |R𝑛| ≤ |𝑢𝑛+1|.
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Remarque. En français : le reste d’une série vérifiant le critère des séries alternées est du même signe que son premier
terme et est majoré en valeur absolue par la valeur absolue de ce premier terme.

Exemple 3.8

Considérons la série ∑
𝑛∈ℕ∗

𝑢𝑛 avec 𝑢𝑛 = (−1)𝑛−1

√𝑛
. D’après le critère spécial des séries alternées, cette série converge.

Notons S sa somme et R𝑛 =
+∞
∑

𝑘=𝑛+1
𝑢𝑘.

• Alors S = R0 donc S est du signe de 𝑢1 et |S| ≤ |𝑢1|. On en déduit que 0 ≤ S ≤ 𝑢1 = 1.

• On peut affiner l’encadrement. En effet, R1 est du signe de 𝑢2 et |R1| ≤ |𝑢2| donc − 1
√2

≤ R1 ≤ 0. Comme

S = 𝑢1 + R1, 1 −
1
√2

≤ S ≤ 1.

• On peut encore aller plus loin. R2 est du signe de 𝑢3 et |R2| ≤ |𝑢3| donc 0 ≤ R2 ≤
1
√3

. Comme S = 𝑢1 + 𝑢2 +R2,

1 − 1
√2

≤ S ≤ 1 − 1
√2

+ 1
√3

.
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