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SERIES NUMERIQUES

K désigne le corps R ou C.

1 Généralités

1.1 Définitions

Définition 1.1 Série

Soit (up)nzn, une suite numérique (i.e. a valeurs dans ). On appelle série de terme général u,, la suite (S,) 5y, Ol

n
Vn > ng, S, = Z Uy

k:no

Cette série est noté Z u, ou plus simplement Z u, s’il n’y a pas ambiguité sur le premier terme.
nZno
Pour n > ng, S,, est appelée somme partielle de rang n de cette série.

REMARQUE. Une série est donc un cas particulier de suite.

Exemple 1.1

On appelle série arithmétique toute série dont le terme général est le terme général d’une suite arithmétique.
nn+1)

Par exemple, Z n est une série arithmétique. Sa somme partielle de rang n est >

n>0

Exemple 1.2

On appelle série géométrique toute série dont le terme général est le terme général d’une suite géométrique. Par exemple,
Z 2" est une série géométrique. Sa somme partielle de rang n est 2" — 1.
n>0

Exemple 1.3

1
On appelle série harmonique la série Z —.
nx1

Exemple 1.4

On appelle série télescopique toute série dont le terme général est de la forme u,, = v, — v,,_;. La somme partielle de
rang n de la série Z u, est v, — Ug.
n>1
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REMARQUE. La suite des sommes partielles de la série Z u,, est croissante (resp. décroissante) si et seulement si la
n=ngy
suite (Up)p>n,+1 €St positive (resp. négative).

1.2 Nature et somme d’une série

Définition 1.2 Convergence et divergence

On dit qu’'une série converge (resp. diverge) si la suite de ses sommes partielles converge (resp. diverge).

REMARQUE. La convergence d’une série ne dépend pas du premier rang i.e. les séries Z u, et Z u,, sont de méme

nzng n>n;
nature.
Définition 1.3 Somme d’une série
+00
Si la série Z u,, converge, la limite de la suite des sommes partielles est appelée somme de la série et est notée Z Up.
n>ngo n=ny

+00 n
REMARQUE. On a donc E u, = lim E Up.
n—->+oo
n=ngy k=ng

REMARQUE. Aussi surprenant cela puisse-t-il paraitre, une somme infinie de termes, fussent-ils tous positifs, peut se
révéler étre finie.

+o00
ATTENTION! La notation Z u, n’a de sens que si la série Z u,, converge. Il faut donc prouver la convergence de la
n=ng nzng

série avant d’employer cette notation.

Proposition 1.1 Lien suite/série

La série télescopique Z (uy, — u;,_1) et la suite (u,,) sont de méme nature (i.e. elles convergent toutes les deux ou elles

divergent toutes les deux).
+00

De plus, si (u,,) converge vers une limite £, Z Up —Up_y =€ — Uy ;.
n=ny

Exercice 1.1

1

Nature et somme de la série Z m

n>1

M(q
REMARQUE. On appelle série de Taylor une série de la forme Z fn—'()(x — a)"*. On ne peut a priori rien dire sur ce
neN :
type de série mais dans le cas ot elle converge vers f(x) (attention, ce n’est pas toujours le cas), on peut éventuellement

le montrer grace a I’inégalité de Taylor-Lagrange.
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Exercice 1.2 % % % Taylor-Lagrange

A T’aide de I’inégalité de Taylor-Lagrange prouver la convergence et déterminer la somme des séries suivantes

n

1. Z %pourxe[R;

n>0
(_1)nx2n (_1)nx2n+l
2. Z et Z pour x € R.
AT enl A @nt )

_1\n—1,n
3. Z (DTX pour x € [0,1].

n>1

VY10 Y Changement d’indice

Il est possible d’effectuer des changements d’indices dans la somme d’une série. C’est méme plus simple que pour une
somme finie. Par exemple, supposons que la série Z u, converge. Effectuons par exemple le changement d’indice p =

neN
n+1.
+00 N N+1 +00
Z u, = lim Z u, = lim Z Up_1 = Up_1
n=0 N—+o00 =0 N—+o00 p=1 p=1
+o0 +0oo
En pratique, on ne passe pas par la limite des sommes partielles et on écrit directement Z U, = Z Up_1-
n=0 p=1

1.3 Opérations sur les séries

La proposition suivante n’est qu’une conséquence de la linéarité de la limite.

Proposition 1.2 Linéarité de la somme

Soient Z u, et Z v, deux séries numériques convergentes et (A, ) € K2. Alors la série Z (Au,, + pv,) converge
nZl’lo nZno nZno

+00 +00 +0o0
Z (Aup + pv,) = A Z Uy + 1 Z Un

n>ng n>ng n>ng

et

REMARQUE. En termes plus savants, les séries numériques convergentes forment un K-espace vectoriel et I’application
qui a une série convergente associe sa somme est une forme linéaire sur cet espace vectoriel.

AtTENTION! La réciproque est fausse en général. Par exemple, si Z (uy, + v,) converge, on ne peut rien dire de Z u, et

Z v, (prendre par exemple, u,, = —v, = 2").
+0o0 +0o +0o0

On évitera a tout prix d’écrire des égalités du type Z (u, +v,) = Z U+ Z v, avant d’avoir prouvé la convergence

des séries Z u, et Z Uy,

nZno nZno

n=ngp n=nyp n=ngp
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Proposition 1.3

Soit Z u,, une série complexe. Alors Z u,, converge si et seulement si Z Re(u,,) et Z Im(u,,) convergent et dans

l’lZno YlZno nZno nZnO
Cce cas
+0o0 +0o0 +0o0
Z u, = Z Re(u,) +i Z Im(u,,)
n=ng n=ng n=ngp

En particulier

Re( Zo:o un) = 2030 Re(u,) Im( 2030 un> = 2030 Im(u,,)

n=ng n=ng n=ngp n=ngp

Exercice 1.3

(ix)"

n!

Soit x € R. Montrer que la série Z converge et a pour somme e*. En déduire la convergence des séries

neN

et leurs sommes.

(_l)nx2n (_l)nx2n+1
2 o % 2 Gt

neN neN

Proposition 1.4 Conjugaison

Soit Z u, une série numérique. Alors les séries Z u, et Z u,, sont de méme nature.

n>ng n>ng n>ng
+00 +o0
En cas de convergence, Z u, = Z Uy,
n=ny n=ngy

1.4 Divergence grossiere

Proposition 1.5

Soit Z u, une série convergente. Alors la suite (u,,) converge vers 0.

‘o . oo 1 .
ATTENTION! La réciproque est absolument fausse. Par exemple, la suite de terme général - converge vers 0 tandis que
la série harmonique diverge.

Définition 1.4 Divergence grossiere

Une série )  u,, est dite grossierement divergente lorsque la suite (u,,) ne converge pas vers 0.
n q n gep

Exemple 1.5

Si|q| > 1, 1a série Z q" diverge grossiérement.

‘o 1 . N
La série Z -, ne diverge pas grossiérement.
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1.5 Séries usuelles

Proposition 1.6 Série géométrique

Soit g € C. La série géométrique Z q" converge si et seulement si |q| < 1.
+00
1
Dans ce cas, Z qt=—.

n=0 1_q

Exercice 1.4

Nature et somme de la série Z nq".
neN

Proposition 1.7 Série exponentielle

n +00 _p
. 25 4 z
Soit z € C. La série Z o GO et Z Pl ez
! = n

1.6 Reste d’une série convergente

Définition 1.5 Reste d’une série convergente

Soit Z u, une série convergente. Pour tout n > ng, la série Z Uy, est convergente et on appelle sa somme le reste

nxng k>n+1
+o00
de rang n de la série Z u,. Autrement dit, le reste de rang n de la série Z u,, est Z Up.
n>ng nxng k=n+1

Proposition 1.8

Soit Z u, une série convergente. Alors pour tout n > n,
nzng

+00 n +o00
Z Uk = Z Uy + Z Uk

k=ng k=ngy k=n+1

REMARQUE. Si on note S, la somme partielle de rang n, R, le reste de rang n et S la somme de la série, on a donc
S, + R,, = S pour tout n > ny.

Exemple 1.6

n+l1
q

l—-q

Lorsque |q| < 1, le reste de rang n de la série Z q" est
neN

Corollaire 1.1

La suite des restes d’une série convergente converge vers 0.
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2 Comparaison a une intégrale

WYY Comparaison a une intégrale

On considére une série Z f(n) ot f est une fonction continue et monotone sur R,. On peut comparer les sommes
n>0
partielles S,, a une intégrale pour déterminer la nature de la série. Si, par exemple, f est croissante, on en déduit que pour

toutk e Nett € [k,k+1]:
Jk) < f(6) < f(k+1)
Puis par intégration sur [k, k + 1],
k+1
fk) < f®) dt < f(k+1)
k

Enfin, en sommant I’inégalité de gauche pour 0 < k < n et celle de droite pour 0 < k < n — 1, on obtient via la relation
de Chasles

n n+1
f S di + f(0) S, < f ) dt
0 0

On a des résultats analogues lorsque f est décroissante.

Les encadrements obtenus permettent éventuellement de déterminer un équivalent de la suite des sommes partielles.
Graphiquement, la méthode correspond a encadrer I’intégrale de f sur un intervalle par une somme d’aires de rectangles
d’ot le nom de méthode des rectangles.

Cas d’une fonction croissante Cas d’une fonction décroissante

En modifiant 1égérement la technique, on peut également obtenir un encadrement et potentiellement un équivalent de la
suite des restes (en cas de convergence).

REMARQUE. Il ne s’agit pas de retenir des formules par coeur mais de retenir la méthode permettant d’obtenir des enca-
drements des sommes partielles et des restes.
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Exemple 2.1 Equivalent de la série harmonique

1 S 1
La fonction ¢t — 7 est décroissante sur R’ . On en déduit que pour tout k € N* et tout t € [k, k + 1],

L
k+1

k+1
—1 < ﬂ<
k+1_k t ~

En sommant convenablement, on obtient pour tout n € N*

<

~ | =
IA
&=

Par intégration,

-

ou encore

IA

In(n+1) < Z % 1+ In(n)

L’inégalité de gauche permet de conclure que la série harmonique 2 - diverge.

n
a P . 1
L’ encadrement permet méme d’affirmer que donner un équivalent des sommes partielles Z i~ In n.
k=1
Proposition 2.1 Séries de Riemann
. . 1 . .
Soit a € R. La série Z — converge si et seulement si o« > 1.
ns1
. . 1 . s
REMARQUE. Sia <0, la série z — diverge grossiérement.
nO[
n>1

+oo
REMARQUE. Pour a > 1, on note {(a) = Z e La fonction § est appelée fonction £ de Riemann.

n=1
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a 1
Exemple 2.2 Equivalent du reste de la série z 7

1
La fonction t — 7 est décroissante sur R’ . On en déduit que pour tout k € N* et tout t € [k, k + 1],

11

Par intégration,

Mais en sommant 1’encadrement précédent, on a également pour N > n > 1

N+1 N N
dt 1 dt
f t—ZSZpﬁft—z
n n

+1 k=n+1
ou encore N
1 1 1 1 1
PFl NFIS 2 ESETN
k=n+1
Par passage a la limite
+o00
Ly 11
< 5 <
n+l™ &, k n
1
On obtient ainsi un équivalent de la suite des restes de la série Z 7
Ji" 1 1
= k2 no+0o N

Exercice 2.1

Déterminer un équivalent de la somme partielle de la série z — lorsque a < 1 et un équivalent de son reste lorsque
n>1

o> 1.

3 Séries a termes positifs

Une série Z u, est dite a termes positifs si les u,, sont positifs.

3.1 Résultats généraux

Le théoreme de la limite monotone permet d’énoncer le résultat suivant.

Proposition 3.1

Une série a termes positifs converge si et seulement si la suite de ses sommes partielles est majorée.
Dans le cas contraire, elle diverge vers +oo.

http://1lgarcin.github.io 8


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

Corollaire 3.1
Soit Z u, et Z v, deux séries réelles telles que 0 < u, < v, a partir d’un certain rang.
@ Si Z v, converge, alors Z u, converge.

(i) Si z u,, diverge, alors 2 v, diverge.

+oo +o00
REMARQUE. En cas de convergence et si u, < v, pour n > N, alors Z u, < Z Uy
n=N n=N

Exemple 3.1

arctan n
n2

La série Z converge.

L. Inn .
La série Z W diverge.

\Y 10 Y Comparaison série-intégrale : nature d’une série

On considere une série Z f(n) ot f est une fonction continue par morceaux, positive et décroissante sur R, . On peut
n>0

déterminer la nature de la série Z f(n) en comparant son terme général a une intégrale.

Donnons-nous n € N. Pour tout ¢t € [n,n + 1], f(¢t) < f(n) puis en intégrant sur [n,n + 1],

n+1
f £(0) dt < f(n)
ie.
0<F(n+1)-Fn) < f(n)

ol F est une primitive de f. Si la suite (F(n)) diverge, la série télescopique 2 F(n+ 1) — F(n) diverge également et enfin,
la série Z f(n) diverge par comparaison.
De la méme maniére, si on se donne n € N*, pour tout ¢t € [n — 1,n], f(n) < f(t) puis

Osﬂms/nﬂom=ww—mmd)
n—1

Si la suite (F(n)) converge, la série télescopique Z F(n) — F(n—1) converge aussi et enfin, la série Z f(n) converge par
comparaison.

Exemple 3.2

5—- On constate que ¢ -
nln“n tln

On souhaite déterminer la nature de la série Z 5— est décroissante sur 11, +oo[. Ainsi

t
pour n > 3,

1 "odr [1r 1 1
nin’n . tIn?t Intl,_; In(n—1) Inn

1 1
[y la série t€l : 11
Comme la suite (ln n) converge, la série télescopique E m(i—1) inn

converge par comparaison.

converge aussi et enfin, la série Z >
nin“n
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Exemple 3.3

1 1 L. .
On souhaite déterminer la nature de la série Z Ton On constate que ¢ — Y est décroissante sur |1, +oo[. Ainsi

pour n > 2,

nl g 1
0< — <
L tlnt — nlnn

ou encore

< - <
0 < In(In(n + 1)) — In(Inn) < pYm

Comme la suite (In(In n)) diverge, la série télescopique Z In(In(n+ 1)) — In(In n) diverge aussi et enfin, la série Z

i ) nlnn
diverge par comparaison.
3.2 Absolue convergence
Définition 3.1 Absolue convergence
Une série numérique (réelle ou complexe) Z u,, est dite absolument convergente si Z |u,,| converge.
Théoreme 3.1
+o00 +o00
Une série absolument convergente est convergente. Dans ce cas, Z U,| < |ty .
n=0 n=0
” N G Ve . R
AtTENTION! La réciproque est fausse. La série Z ———— converge tandis que la série Z — diverge.
n>1 h n>1 n
Exemple 3.4
. sinn
La série z 7R converge absolument.
Exercice 3.1 Sommation d’Abel

Soient (@,)n>n, €t (By)nzn, deux suites complexes. On définit deux suites (Ap,)pzn, €t (bp)pzp, de la maniére suivante :

n
Vn > ny, Ay = Z k> by = Byy1 — By

k:no
n n—1
1. Montrer que Z aBr = A,B, — Z Ayby pour tout n > ny.
k=l’l0 k=l’lo
e . L e 1s sinn
2. Utiliser la question précédente pour étudier la convergence de Z —_—
n>1

3. De maniére générale, montrer que si (B,,) converge vers 0, si (A,,) est bornée et si Z b,, est absolument convergente,
n>ng
alors Z a, B, est convergente.
n>ng
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3.3 Relations de comparaison

Proposition 3.2
Soient Z u,et Z v, deux séries numériques. On suppose 2 v,  termes positifs a partir d’un certain rang. Siu,, = O(v,;)

et si z v,, converge, alors Z u, converge absolument.

REMARQUE. Les résultats restent vrais si on remplace le () par un o puisque la négligabilité implique la domination.

="

AtTENTION! Encore une fois, il est essentielle que la série Z U, soit a termes positifs. Posons u,, = — etv, = .
n

\/71

La série Z v, converge et u,, = O(v,) mais Z u,, diverge.

Proposition 3.3

Soient Z u, et Z v, deux séries numériques dont I’une des deux est a termes positifs a partir d’un certain rang. Si
U, ~ Uy, alors Z u, et Z v, sont de méme nature.

REMARQUE. Si (u,) et (v,) sont des suites réelles telles que u,, ~ v,, alors u,, et v,, sont de méme signe a partir d’un
certain rang.

Exemple 3.5

La série z e~Vn converge.

1
La série Z ——— diverge.
nilnn

- 1 .1
La série Z - sin — est convergente.

ATTENTION! Il est essentiel que les des deux séries soit a termes positifs (du moins a partir d’un certain rang).

1" 1" 1
Par exemple, en posant u,, = (\/_) etv, = (\/_) + Lona bien u,, ~ v, mais Z u, converge tandis que Z U,
n n
diverge.
Exercice 3.2 Reégle de d’Alembert

Soit Z u, une série a termes strictement positifs.

neN
. . 4 o1 Untl -
1. Montrer que si la suite de terme général —*= admet une limite [ < 1, alors z u, converge.
Un neN
Un+1

2. Montrer que si la suite de terme général admet une limite [ > 1, alors z u,, diverge.

¢ neN

u
3. Montrer a I’aide de deux exemples que 1’on ne peut pas conclure si la suite de terme général ntl

admet 1 pour limite.
n

oL . n!
4. Etudier la nature de la série Z —.
neN*
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3.4 Séries alternées

Proposition 3.4 Critére spécial des séries alternées

Soit (u,,) une suite monotone (a partir d’un certain rang) et de limite nulle. Alors la série Z(—l)”un converge.

REMARQUE. Ce critere est utile pour montrer la convergence de série non absolument convergente. Il serait par exemple
(="

2

ridicule d’invoquer ce résultat pour justifier la convergence de la série Z

neN*
nz n—+00 I’l2

. I suffit en effet de constater que

Exemple 3.6

1"
La série Z (=1

neN*

est convergente.

Exemple 3.7

—1)"
On souhaite étudier la convergence de la série Z sin <%>

neN*
(="

—1)" - A as p
et Z u converge car elle respecte le critere spécial des séries alternées.
n—+oo n neN*
Mais on ne peut pas utiliser le théoréme de comparaison car il ne s’agit pas 1a de séries a termes positifs.

Néanmoins, comme sinu = u + O(u?),
0

u—

—1"
Bien entendu, sin (%)

n n—+o0o n

sin<(_1)n> = (_1)n+0(%>

o (D" e s . - : 1
La série Z —, — converge car elle respecte le critere spécial des séries alternées et la série de Riemann Z -3 converge

( . o . ((=1)" (o
également. On en déduit que la série Z sin <( n) converge en tant que somme de deux séries convergentes.
neN*

Exercice 3.3

Déterminer la nature de la série Z sin (n\/ nz+1 '

neN

Proposition 3.5 Signe et majoration du reste d’une série alternée

Soit (up)nzn, une suite monotone de limite nulle. On note R, le reste d’ordre n de la série Z (-1)"u, ie. R, =

n>ngo
+0o0

Z (=1)*uy. Alors pour tout n > ny — 1,
k=n+1

* R, est du signe de (—1)""u,,,;;

* IRyl < [l

http://1lgarcin.github.io 12


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

REMARQUE. En frangais : le reste d’une série vérifiant le critere des séries alternées est du méme signe que son premier
terme et est majoré en valeur absolue par la valeur absolue de ce premier terme.

Exemple 3.8

. (o —1)"! N . - o [ ‘o
Considérons la série Z U, avec u, = (—) D’apres le critere spécial des séries alternées, cette série converge.

neN* \/ﬁ

+o00
Notons S sa somme et R,, = Z Uy.
k=n+1

e Alors S = R donc S est du signe de u; et [S| < |u;]. On en déduitque 0 < S < uy =1.

1
¢ On peut affiner I’encadrement. En effet, R; est du signe de u, et |R;| < |u,| donc —? < R; £ 0. Comme
2

1
S=u1+R1,1——§531
2

1
¢ On peut encore aller plus loin. R, est du signe de us et |R,| < |u3] donc 0 < R, < —. Comme S = u; + u, + R,,
3

1- <S<1- T

%
%
%
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