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Sommes et produits
Dans ce chapitre, 𝕂 désigne le corps ℝ ou ℂ.

1 Techniques de calcul

1.1 Le symbole ∑

Notation 1.1

Soit I un ensemble fini et (𝑎𝑖)𝑖∈I ∈ 𝕂I. On note ∑
𝑖∈I

𝑎𝑖 la somme des éléments de la famille (𝑎𝑖)𝑖∈I ∈ 𝕂I.

Remarque. L’associativité et la commutativité de la loi + sur 𝕂 permet de définir correctement cette somme. Elle ne dépend
pas de l’ordre dans lequel on somme les termes.

Remarque. Si I = ∅, on convient que ∑
𝑖∈I

𝑎𝑖 = 0 (élément neutre pour la loi +).

Notation 1.2

Dans le cas où I = J𝑚, 𝑛K, on note

∑
𝑘∈J𝑚,𝑛K

𝑎𝑘 =
𝑛
∑
𝑘=𝑚

𝑎𝑘 = {
𝑎𝑚 + 𝑎𝑚+1 +⋯+ 𝑎𝑛−1 + 𝑎𝑛 si 𝑚 ≤ 𝑛,
0 sinon.

On peut aussi noter ∑
𝑚≤𝑘≤𝑛

𝑎𝑘. Cette somme comporte 𝑛 − 𝑚 + 1 termes.

Remarque. La variable 𝑘 est muette : on peut la remplacer par n’importe quelle autre variable. Autrement dit,
𝑛
∑
𝑘=𝑚

𝑎𝑘 =
𝑛
∑
𝑝=𝑚

𝑎𝑝

Exercice 1.1

Calculer
𝑛−1
∑
𝑘=2

1.

Attention!� Le résultat d’une somme ne peut pas dépendre de l’indice de sommation, ça n’aurait aucun sens ! Une somme
ne dépend que de ses bornes et du terme général sommé.

1.2 Règles de calcul
Linéarité de la somme :

∑
𝑘
(𝑎𝑘 + 𝑏𝑘) = ∑

𝑘
𝑎𝑘 +∑

𝑘
𝑏𝑘

∑
𝑘
λ𝑎𝑘 = λ∑

𝑘
𝑎𝑘
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Attention!� On ne peut mettre en facteur qu’une expression qui ne dépend pas de l’indice de sommation.

Remarque. Si on combine les deux propriétés précédentes, on a :

∑
𝑘
(λ𝑎𝑘 + μ𝑏𝑘) = λ∑

𝑘
𝑎𝑘 + μ∑

𝑘
𝑏𝑘

Attention!� La sommation se comporte mal avec les produits. Autrement dit, en général,

∑
𝑘
𝑎𝑘𝑏𝑘 ≠ (∑

𝑘
𝑎𝑘) (∑

𝑘
𝑏𝑘)

1.3 Sommes télescopiques

Méthode Télescopage

On appelle somme télescopique toute somme du type suivant

𝑛
∑
𝑘=𝑚

(𝑎𝑘+1 − 𝑎𝑘) = 𝑎𝑛+1 − 𝑎𝑚

Exercice 1.2

Calculer S𝑛 =
𝑛
∑
𝑘=1

ln (1 + 1
𝑘).

Sommes de puissances

Notons S𝑚(𝑛) =
𝑛
∑
𝑘=1

𝑘𝑚. On sait (série arithmétique) que S1(𝑛) =
𝑛(𝑛 + 1)

2 . Traitons le calcul de S2(𝑛).

Première méthode
On pose 𝑢𝑘 = 𝑎𝑘3 + 𝑏𝑘2 + 𝑐𝑘 et on déterminer 𝑎, 𝑏, 𝑐 tels que 𝑢𝑘+1 − 𝑢𝑘 = 𝑘2 pour tout 𝑘 ∈ ℕ.

Deuxième méthode

On exprime la somme
𝑛
∑
𝑘=1

[(𝑘 + 1)3 − 𝑘3] de deux manières différentes. On a par télescopage

𝑛
∑
𝑘=1

[(𝑘 + 1)3 − 𝑘3] = (𝑛 + 1)3 − 1 = 𝑛 [(𝑛 + 1)2 + (𝑛 + 1) + 1] .

Et en développant chaque terme de la somme, on a aussi :

𝑛
∑
𝑘=1

[(𝑘 + 1)3 − 𝑘3] = 3
𝑛
∑
𝑘=1

𝑘2 + 3
𝑛
∑
𝑘=1

𝑘 +
𝑛
∑
𝑘=1

1 = 3S2(𝑛) + 3S1(𝑛) + 𝑛

Après calcul, on obtient

S2(𝑛) =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

Exercice 1.3

Calculer S3(𝑛).
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1.4 Changement d’indice

Méthode Changement d’indice

On peut procéder à un changment d’indice pour deux types de raison.

• Si l’on veut changer l’indice dans les termes à sommer. Par exemple,

𝑛
∑
𝑘=𝑚

𝑎𝑘+1 =
𝑛+1
∑

𝑙=𝑚+1
𝑎𝑙

en posant 𝑙 = 𝑘+1 dans les termes de la somme et en remarquant que 𝑙 prend alors toutes les valeurs entières entre
𝑚+ 1 et 𝑛 + 1. Ou encore,

𝑛
∑
𝑘=0

𝑎𝑛−𝑘 =
𝑛
∑
𝑙=0

𝑎𝑙

en posant 𝑙 = 𝑛−𝑘 dans les termes de la somme et en remarquant que 𝑙 prend alors toutes les valeurs entières entre
0 et 𝑛.

• Si l’on veut changer les bornes de la somme. Par exemple,

𝑛+2
∑
𝑘=2

𝑎𝑘 =
𝑛
∑
𝑙=0

𝑎𝑙+2

en posant 𝑙 = 𝑘 − 2 de telle sorte que les bornes soient 0 et 𝑛 et en changeant les indices des termes de la somme
en remarquant que 𝑘 = 𝑙 + 2.

Dans les deux cas, on peut vérifier en considérant le premier et le dernier terme de la somme avant et après changement
d’indice.

Attention!� On ne peut pas effectuer n’importe quel changement d’indice. Par exemple, soit S =
3
∑
𝑘=0

𝑎2,𝑘. On pourrait

naïvement effectuer le chanegement d’indice 𝑙 = 2𝑘 de sorte que S =
6
∑
𝑙=0

𝑎𝑙. Mais

3
∑
𝑘=0

𝑎2,𝑘 = 𝑎0 + 𝑎2 + 𝑎4 + 𝑎6 tandis que
6
∑
𝑙=0

𝑎𝑙 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6

Le problème vient du fait que 2𝑘 ne prend pas toutes les valeurs entières entre 0 et 6 mais seulement les valeurs paires.

Exercice 1.4

Compléter les trous dans les égalités suivantes :

𝑛
∑
𝑘=3

𝑢𝑘+2 =
•
∑
𝑘=•

𝑢𝑘,
𝑛−1
∑
𝑘=4

𝑢𝑘 =
•
∑
𝑘=1

𝑢•,
𝑛+2
∑
𝑘=3

𝑢𝑘+1 =
𝑛
∑
𝑘=•

𝑢•

Exercice 1.5

Calculer la somme 𝑛
∑
𝑘=1

(1𝑘 −
1

𝑛 + 1 − 𝑘) .

On peut énoncer cette technique de changement d’indice de manière plus rigoureuse.
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Proposition 1.1

Soit I un ensemble fini, (𝑎𝑖)𝑖∈I ∈ 𝕂I et φ une bijection de I sur un ensemble J. Alors

∑
𝑖∈I

𝑎φ(𝑖) = ∑
𝑗∈J

𝑎𝑗

Remarque. On a effectué le changement d’indice 𝑗 = φ(𝑖).

1.5 Sommation par paquets
On a d’abord tout simplement :

𝑛
∑
𝑘=𝑚

𝑎𝑘 =
𝑝
∑
𝑘=𝑚

𝑎𝑘 +
𝑛
∑

𝑘=𝑝+1
𝑎𝑘 si 𝑚 ≤ 𝑝 ≤ 𝑛

Exercice 1.6

Calculer
2𝑛
∑
𝑘=0

min(𝑘, 𝑛) et
2𝑛
∑
𝑘=0

max(𝑘, 𝑛).

Séparation des termes d’indices pairs et impairs

Il existe plusieurs façons d’écrire la somme des termes d’indices pairs et et la somme des termes d’indices impairs.

𝑛
∑
𝑘=𝑚

𝑎𝑘 =
𝑛
∑
𝑘=𝑚
𝑘 pair

𝑎𝑘 +
𝑛
∑
𝑘=𝑚
𝑘 impair

𝑎𝑘

= ∑
𝑚≤𝑘≤𝑛
𝑘 pair

𝑎𝑘 + ∑
𝑚≤𝑘≤𝑛
𝑘 impair

𝑎𝑘

= ∑
𝑚≤2𝑘≤𝑛

𝑎2,𝑘 + ∑
𝑚≤2𝑘+1≤𝑛

𝑎2𝑘+1

=
⌊ 𝑛2 ⌋

∑
𝑘=⌈𝑚2 ⌉

𝑎2,𝑘 +
⌊ 𝑛−12 ⌋

∑
𝑘=⌈𝑚−1

2 ⌉

𝑎2𝑘+1

Exemple 1.1

2𝑛
∑
𝑘=0

(−1)𝑘(
2𝑛
𝑘
) =

𝑛
∑
𝑙=0

(
2𝑛
2𝑙
) −

𝑛−1
∑
𝑙=0

(
2𝑛

2𝑙 + 1
) =

𝑛
∑
𝑙=0

(
2𝑛
2𝑙
) −

𝑛
∑
𝑙=1

(
2𝑛

2𝑙 − 1
)

2𝑛+1
∑
𝑘=0

(−1)𝑘(
2𝑛 + 1
𝑘

) =
𝑛
∑
𝑙=0

(
2𝑛
2𝑙
) −

𝑛
∑
𝑙=0

(
2𝑛

2𝑙 + 1
) =

𝑛
∑
𝑙=0

(
2𝑛
2𝑙
) −

𝑛+1
∑
𝑙=1

(
2𝑛

2𝑙 − 1
)

On peut énoncer cette technique de sommation par paquet de manière plus rigoureuse.
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Proposition 1.2

Soit (𝑎𝑖)𝑖∈I ∈ 𝕂I. Si I =
𝑛

⨆
𝑗=1

B𝑗, alors

∑
𝑖∈I

𝑎𝑗 =
𝑛
∑
𝑗=1

(∑
𝑖∈B𝑗

𝑎𝑖)

2 Sommes classiques

2.1 Factorisation de 𝑎𝑛 − 𝑏𝑛

Proposition 2.1

Soient (𝑎, 𝑏) ∈ 𝕂2 et 𝑛 ∈ ℕ. Alors

𝑎𝑛 − 𝑏𝑛 = (𝑎 − 𝑏)(𝑎𝑛−1 + 𝑎𝑛−2𝑏 +⋯+ 𝑎𝑏𝑛−2 + 𝑏𝑛−1)

= (𝑎 − 𝑏)
𝑛−1
∑
𝑘=0

𝑎𝑘𝑏𝑛−1−𝑘 = (𝑎 − 𝑏)
𝑛−1
∑
𝑘=0

𝑎𝑛−1−𝑘𝑏𝑘

Remarque. On a en particulier

𝑎𝑛 − 1 = (𝑎 − 1)(𝑎𝑛−1 + 𝑎𝑛−2 +⋯+ 𝑎 + 1) = (𝑎 − 1)
𝑛−1
∑
𝑘=0

𝑎𝑘

2.2 Séries arithmétiques et géométriques

Proposition 2.2 Séries arithmétiques

Soient (𝑎𝑛) une suite arithmétique et (𝑛, 𝑝) ∈ ℕ2 tels que 𝑛 ≤ 𝑝.

𝑝
∑
𝑘=𝑛

𝑎𝑘 = N
𝑎𝑛 + 𝑎𝑝

2

où N = 𝑝 − 𝑛 + 1 est le nombre de termes de la somme.
En français, la somme de termes consécutifs d’une suite arithmétique est égal au produit de la moyenne des termes
extrêmes par le nombre de termes.

Exemple 2.1

On retrouve en particulier que
𝑛
∑
𝑘=1

𝑘 = 𝑛(𝑛 + 1)
2 .
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Proposition 2.3 Séries géométriques

Soient (𝑎𝑛) une suite géométrique de raison 𝑞 et (𝑛, 𝑝) ∈ ℕ2 tels que 𝑛 ≤ 𝑝.

𝑝
∑
𝑘=𝑛

𝑎𝑘 = {
𝑎𝑛
1 − 𝑞N

1 − 𝑞 si 𝑞 ≠ 1

N𝑎𝑛 = N𝑎𝑝 si 𝑞 = 1

où N = 𝑝 − 𝑛 + 1 est le nombre de termes de la somme.

Remarque. On retiendra en particulier que
𝑛
∑
𝑘=0

𝑞𝑘 = {
1 − 𝑞𝑛+1

1 − 𝑞 si 𝑞 ≠ 1

𝑛 + 1 si 𝑞 = 1
.

Exercice 2.1

Calculer
𝑛
∑
𝑘=1

𝑘2𝑘.

2.3 Sommes binomiales
2.3.1 Coefficients binomiaux

Définition 2.1 Factorielle

Pour 𝑛 ∈ ℕ∗, on note 𝑛! le produit des entiers de 1 à 𝑛 i.e. 𝑛! =
𝑛
∏
𝑘=1

𝑘. On convient que 0! = 1.

Définition 2.2 Coefficient binomial

Soit 𝑛 ∈ ℕ et 𝑘 ∈ J0, 𝑛K.

(
𝑛
𝑘
) = 𝑛(𝑛 − 1)… (𝑛 − 𝑘 + 1)

𝑘! = 𝑛!
(𝑛 − 𝑘)!𝑘!

Remarque. Lorsque l’on interprétera les coefficients binomiaux de manière combinatoire, on verra que l’on peut convenir

que (
𝑛
𝑘
) = 0 pour 𝑘 > 𝑛.
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Proposition 2.4 Propriétés des coefficients binomiaux

Symétrie des coefficients binomiaux Soit (𝑛, 𝑘) ∈ ℕ2 tel que 𝑘 ≤ 𝑛.

(
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

)

Formule de Pascal Soit (𝑛, 𝑘) ∈ (ℕ∗)2 tel que 𝑘 ≤ 𝑛.

(
𝑛
𝑘
) = (

𝑛 − 1
𝑘

) + (
𝑛 − 1
𝑘 − 1

)

Relation utile Soit (𝑛, 𝑘) ∈ (ℕ∗)2 tel que 𝑘 ≤ 𝑛.

𝑘(
𝑛
𝑘
) = 𝑛(

𝑛 − 1
𝑘 − 1

)

Remarque. Ces relations sont encore vraies sans condition sur 𝑘 et 𝑛 si l’on convient que (
𝑛
𝑘
) = 0 pour 𝑘 > 𝑛.

Triangle de Pascal

La relation de Pascal permet de construire le triangle de Pascal donnant les coefficients binomiaux de proche en proche.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

𝑛 = 4

𝑛 = 5

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

On obtient une case en additionnant la case au-dessus et la case au-dessus à gauche : par exemple, 10 = 6+4 ou 3 = 2+1.
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Dénombrement de chemins

Les coefficients binomiaux peuvent également s’interpréter en termes de dénombrement de chemins dans un arbre binaire.

En effet, le coefficient binomial (
𝑛
𝑘
) correspond aux nombres de chemins d’un arbre binaire de «profondeur» 𝑛 dans

lesquels on a choisi 𝑘 fois la branche de gauche et donc 𝑛 − 𝑘 fois la branche de droite.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

+

+ +

+ + +

+ + + +

2.3.2 Binôme de Newton

Proposition 2.5 Formule du binôme

Soient (𝑎, 𝑏) ∈ 𝕂2 et 𝑛 ∈ ℕ. Alors

(𝑎 + 𝑏)𝑛 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘

Exemple 2.2

On a
𝑛
∑
𝑘=0

(
𝑛
𝑘
) = (1 + 1)𝑛 = 2𝑛 et

𝑛
∑
𝑘=0

(
𝑛
𝑘
)(−1)𝑘 = (1 − 1)𝑛 = 0.

Exercice 2.2 ★

Calculer les sommes S1 =
𝑛
∑
𝑘=0

(
𝑛
𝑘
) 2𝑘 et S2 =

2𝑛
∑
𝑘=1

(
2𝑛
𝑘
)(−1)𝑘2𝑘−1
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3 Sommes doubles

3.1 Définition et notations

On appelle somme double toute somme du type
𝑙
∑
𝑖=𝑘

𝑛
∑
𝑗=𝑚

𝑎𝑖,𝑗. Par définition,

𝑙
∑
𝑖=𝑘

𝑛
∑
𝑗=𝑚

𝑎𝑖,𝑗 =
𝑙
∑
𝑖=𝑘

S𝑖 où S𝑖 =
𝑛
∑
𝑗=𝑚

𝑎𝑖,𝑗.

On peut aussi noter cette même somme

∑
𝑘≤𝑖≤𝑙
𝑚≤𝑗≤𝑛

𝑎𝑖,𝑗 ou encore ∑
(𝑖,𝑗)∈J𝑘,𝑙K×J𝑚,𝑛K

𝑎𝑖,𝑗

Si les bornes des dans les sommes sont identiques on a une notation plus condensée. Par exemple,
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖,𝑗 = ∑
1≤𝑖,𝑗≤𝑛

𝑎𝑖,𝑗

Attention, les bornes de la deuxième somme peuvent dépendre de l’indice de la première somme. Par exemple,
𝑛
∑
𝑖=2

𝑖−1
∑
𝑗=1

𝑎𝑖,𝑗

Mais l’inverse n’arrive JAMAIS ou alors on a fait une erreur.
On peut aussi avoir des notations plus condensées dans ce cas. Par exemple,

𝑛
∑
𝑖=1

𝑖
∑
𝑗=1

𝑎𝑖,𝑗 = ∑
1≤𝑗≤𝑖≤𝑛

𝑎𝑖,𝑗 ou encore
𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖

𝑎𝑖,𝑗 = ∑
1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗

3.2 Règles de calcul
Ce sont les mêmes que pour une somme simple. Remarquons que l’on peut mettre en facteur dans la deuxième somme

toute expression qui ne dépend pas du deuxième indice. C’est-à-dire,

∑
𝑖∈I

∑
𝑗∈J

𝑎𝑖𝑏𝑖,𝑗 = ∑
𝑖∈I

(𝑎𝑖 ∑
𝑗∈J

𝑏𝑖,𝑗)

Cette dernière remarque nous permet de factoriser une double somme lorsqu’on peut séparer les indices :

∑
(𝑖,𝑗)∈I×J

𝑎𝑖𝑏𝑗 = ∑
𝑖∈I

(∑
𝑗∈J

𝑎𝑖𝑏𝑗) = ∑
𝑗∈J

(∑
𝑖∈I

𝑎𝑖𝑏𝑗) = (∑
𝑖
𝑎𝑖) (∑

𝑗
𝑏𝑗)

Exercice 3.1

Calculer
𝑛
∑
𝑖=0

𝑛
∑
𝑗=0

22𝑖−𝑗.

3.3 Interversion des signes ∑

Si les bornes ne dépendent pas des indices, on peut intervertir les signes ∑ sans se poser de questions.

𝑙
∑
𝑖=𝑘

𝑛
∑
𝑗=𝑚

𝑎𝑖,𝑗 =
𝑛
∑
𝑗=𝑚

𝑙
∑
𝑖=𝑘

𝑎𝑖,𝑗

Sinon, les choses sont un peu plus délicates et on visualise souvent mieux la situation au moyen d’un tableau.
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Méthode Interversion au moyen d’un tableau

Interversion du signe ∑ dans
𝑛
∑
𝑖=0

𝑖
∑
𝑗=0

𝑎𝑖,𝑗.

Dans le tableau ci-contre, on peut faire la somme des élé-
ments

• ligne par ligne :
𝑛
∑
𝑖=0

𝑖
∑
𝑗=0

𝑎𝑖,𝑗

• colonne par colonne :
𝑛
∑
𝑗=0

𝑛
∑
𝑗=𝑖

𝑎𝑖,𝑗

Ces deux doubles sommes sont donc égales. Rien d’éton-
nant à cela puisqu’on peut réécrire ces deux sommes comme
∑

0≤𝑗≤𝑖≤𝑛
𝑎𝑖,𝑗.

i
j 0 1 2 3 4 …

0 𝑎0,0
1 𝑎1,0 𝑎1,1
2 𝑎2,0 𝑎2,1 𝑎2,2
3 𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3
4 𝑎4,0 𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4
⋮

Exercice 3.2

Écrire de deux manières différentes ∑
1≤𝑖<𝑗≤𝑛

𝑎𝑖,𝑗.

Exercice 3.3

Vérifier que
𝑛
∑
𝑘=1

𝑘2𝑘 =
𝑛
∑
𝑘=1

𝑘
∑
𝑙=1

2𝑘 et donner une expression simple de cette somme en intervertissant l’ordre de sommation.

3.4 Sommation par paquets
3.4.1 Premier exemple

Soit par exemple à calculer la somme double S = ∑
1≤𝑖,𝑗≤𝑛

max(𝑖, 𝑗). On peut séparer séparer cette somme en trois «paquets» :

ceux pour lesquels 𝑖 < 𝑗, ceux pour lesquels 𝑖 > 𝑗 et ceux pour lesquels 𝑖 = 𝑗. Ainsi

S = ∑
1≤𝑖<𝑗≤𝑛

max(𝑖, 𝑗) + ∑
1≤𝑗<𝑖≤𝑛

max(𝑖, 𝑗) +
𝑛
∑
𝑖=1

max(𝑖, 𝑖)

= ∑
1≤𝑖<𝑗≤𝑛

𝑗 + ∑
1≤𝑗<𝑖≤𝑛

𝑖 +
𝑛
∑
𝑖=1

𝑖

Les deux premières sommes sont les mêmes (on a juste permuté 𝑖 et 𝑗) et

∑
1≤𝑖<𝑗≤𝑛

𝑗 =
𝑛
∑
𝑗=2

𝑗−1
∑
𝑖=1

𝑗 =
𝑛
∑
𝑗=2

(𝑗 − 1)𝑗 = (S2(𝑛) − 1) − (S1(𝑛) − 1) = S2(𝑛) − S1(𝑛)

Par conséquent,

S = 2(S2(𝑛) − S1(𝑛)) + S1(𝑛) = 2S2(𝑛) − S1(𝑛) =
𝑛(𝑛 + 1)(4𝑛 − 1)

6

3.4.2 Deuxième exemple

Soit maintenant à calculer la somme double ∑
1≤𝑖,𝑗≤𝑛

|𝑖 − 𝑗|. Remarquons que |𝑖 − 𝑗| peut prendre des valeurs de 0 à 𝑛 − 1

donc

∑
1≤𝑖,𝑗≤𝑛

|𝑖 − 𝑗| =
𝑛−1
∑
𝑘=0

∑
|𝑖−𝑗|=𝑘

𝑘 =
𝑛−1
∑
𝑘=1

∑
|𝑖−𝑗|=𝑘

𝑘
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Reste à trouver le nombre de couples (𝑖, 𝑗) tels que |𝑖 − 𝑗| = 𝑘 pour 𝑘 ∈ J1, 𝑛 − 1K (le cas 𝑘 = 0 ne change pas la somme).

On construit le tableau des |𝑖 − 𝑗| pour 𝑛 = 5. On voit qu’on retrouve 𝑛 fois
la valeur 0 (mais elle ne nous intéresse pas) et 2(𝑛 − 𝑘) fois la valeur 𝑘 pour
𝑘 ∈ J1, 𝑛 − 1K.

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

On en déduit donc que

∑
1≤𝑖,𝑗≤𝑛

|𝑖 − 𝑗| =
𝑛−1
∑
𝑘=1

2(𝑛 − 𝑘)𝑘 = 2𝑛S1(𝑛 − 1) − 2S2(𝑛 − 1) = (𝑛 − 1)𝑛(𝑛 + 1)
3

4 Produits

4.1 Le symbole ∏

Notation 4.1

Soit I un ensemble fini et (𝑎𝑖)𝑖∈I ∈ 𝕂I. On note ∏
𝑖∈I

𝑎𝑖 le produit des éléments de la famille (𝑎𝑖)𝑖∈I ∈ 𝕂I.

Remarque. L’associativité et la commutativité de la loi × sur 𝕂 permet de définir correctement cette somme. Elle ne dépend
pas de l’ordre dans lequel on somme les termes.

Remarque. Si I = ∅, on convient que ∏
𝑖∈I

𝑎𝑖 = 1 (élément neutre pour la loi ×).

Notation 4.2

Soient 𝑚 et 𝑛 deux entiers naturels. Alors
𝑛
∏
𝑘=𝑚

𝑎𝑘 = {
𝑎𝑚𝑎𝑚+1…𝑎𝑛−1𝑎𝑛 si 𝑚 ≤ 𝑛,
1 sinon.

On peut aussi noter ∏
𝑚≤𝑘≤𝑛

𝑎𝑘 ou encore ∏
𝑘∈J𝑚,𝑛K

𝑎𝑘. Ce produit comporte 𝑛 − 𝑚 + 1 facteurs.

Attention!� Les éléments intervenant dans un produit sont appelés des facteurs et non des termes. On parle de termes
lorsqu’on manipule des sommes.

Exercice 4.1

Calculer
𝑛
∏
𝑘=0

2.

Il n’est peut-être pas inutile de rappeler qu’un produit est nul si et seulement si un de ses facteurs est nul.

Exercice 4.2

Calculer
1000
∏

𝑘=−1000
𝑘 ln(1 + |𝑘|).
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4.2 Règles de calcul

∏
𝑘
𝑎𝑘𝑏𝑘 = (∏

𝑘
𝑎𝑘) (∏

𝑘
𝑏𝑘)

et par récurrence

∏
𝑘
𝑎𝑛𝑘 = (∏

𝑘
𝑎𝑘)

𝑛

pour 𝑛 ∈ ℕ

et si les 𝑎𝑘 sont tous non nuls

∏
𝑘
𝑎𝑛𝑘 = (∏

𝑘
𝑎𝑘)

𝑛

pour 𝑛 ∈ ℤ

Enfin, en utilisant les propriétés de l’exponentiation, si les 𝑎𝑘 sont tous strictement positifs

∏
𝑘
𝑎λ𝑘 = (∏

𝑘
𝑎𝑘)

λ

pour λ ∈ ℝ

Attention!� On ne peut JAMAIS mettre en facteur une expression dans un produit même si elle ne dépend pas de l’indice
de sommation. Autrement dit, en général,

∏
𝑘
λ𝑎𝑘 ≠ λ∏

𝑘
𝑎𝑘

Cependant, on peut écrire
𝑛
∏
𝑘=1

λ𝑎𝑘 = λ𝑛
𝑛
∏
𝑘=1

𝑎𝑘

puisque le facteur λ apparaît 𝑛 fois dans le produit.

4.3 Produit télescopique
On a le même type de remarque que pour les sommes

𝑛
∏
𝑘=𝑚

𝑣𝑘+1
𝑣𝑘

=
𝑣𝑛+1
𝑣𝑚

en supposant tous les 𝑣𝑘 non nuls.

Exercice 4.3

Calculer
45
∏
𝑘=5

𝑘
𝑘 + 1 et

79
∏
𝑘=29

2𝑘 + 1
2𝑘 − 1 .

4.4 Passage au logarithme
On peut facilement se ramener à une somme en remarquant que

ln (
𝑛
∏
𝑘=𝑚

𝑎𝑘) =
𝑛
∑
𝑘=𝑚

ln 𝑎𝑘

si tous les 𝑎𝑘 sont strictement positifs.

Exercice 4.4

Calculer
𝑛
∏
𝑘=1

2
1

𝑘(𝑘+1) .
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