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SOMMES ET PRODUITS

Dans ce chapitre, K désigne le corps R ou C.

1 Techniques de calcul

1.1 Le symbole Z

Notation 1.1

Soit T un ensemble fini et (a;);c; € K. On note Z a; la somme des éléments de la famille (a;);e; € K.

i€l

REMARQUE. L’associativité et la commutativité de la loi + sur K permet de définir correctement cette somme. Elle ne dépend

pas de I’ordre dans lequel on somme les termes.

REMARQUE. Sil = @, on convient que Z a; = 0 (élément neutre pour la loi +).
iel

-

N

N
Notation 1.2
Dans le cas ou I = [m, n]], on note
n .
am+apy+--+a,1+a, sim<n,
Z ax = Z ai = {0 .
ke[m,n] k=m sinon.
On peut aussi noter Z ay. Cette somme comporte n — m + 1 termes.
m<k<n )

REMARQUE. La variable k est muette : on peut la remplacer par n’importe quelle autre variable. Autrement dit,

n

n
2 W=D, a4
k=m p=m

Exercice 1.1

n—1
Calculer 1.
k=2

ne dépend que de ses bornes et du terme général sommé.

1.2 Regles de calcul

Linéarité de la somme :

D@ +bp) =D ax+ Y by
3 3 3
Zlak =)\.ZCI;{
K k
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@ ‘ AtTENTION! On ne peut mettre en facteur qu’une expression qui ne dépend pas de I’indice de sommation.

REMARQUE. Sion combine les deux propriétés précédentes, on a :

DAy +ub) =AY ag + D by
k k k
@ ATTENTION! La sommation se comporte mal avec les produits. Autrement dit, en général,
D aby # (Z ak) (Z bk)
k k k

1.3 Sommes télescopiques

Télescopage

On appelle somme télescopique toute somme du type suivant

n

Z (kg1 — k) = Qpy1 — Ay
k=m

Exercice 1.2

n
1
Calculer S,, = kZ::l]n (1 + E)'

— Sommes de puissances

n(n+1)

n
Notons S,,,(n) = Z k™. On sait (série arithmétique) que S;(n) = 2

k=1

. Traitons le calcul de S,(n).

Premiere méthode
On pose uy, = ak> + bk? + ck et on déterminer a, b, ¢ tels que uy,; — u; = k? pour tout k € N.
Deuxieme méthode "

On exprime la somme Z [(k +1)3 - k3] de deux manieres différentes. On a par télescopage
k=1

n
D k+1P =k =m+1P-1=n[n+1?+(®n+1)+1].
k=1
Et en développant chaque terme de la somme, on a aussi :

n n n n
Do k+1P k3| =32 k2 +3> k+ D, 1=38,(n)+35,(n) +n
k=1 k=1 k=1 k=1

Apres calcul, on obtient
n(n+1)(2n+1)

S,(n) = 6

Exercice 1.3

Calculer S;(n).
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1.4 Changement d’indice

Changement d’indice

On peut procéder a un changment d’indice pour deux types de raison.

* Si’on veut changer I’indice dans les termes a sommer. Par exemple,

n n+l
Z A1 = z a
k=m I=m+1

en posant [ = k+ 1 dans les termes de la somme et en remarquant que [ prend alors toutes les valeurs entie¢res entre
m+ 1etn+ 1. Ou encore,
n n
Z Apk = Z a;
k=0 1=0
en posant | = n— k dans les termes de la somme et en remarquant que [ prend alors toutes les valeurs enti¢res entre

Oetn.

* Si’on veut changer les bornes de la somme. Par exemple,

n+2
Z i = Z al+2
en posant | = k — 2 de telle sorte que les bornes soient 0 et n et en changeant les indices des termes de la somme

en remarquant que k = [ + 2.

Dans les deux cas, on peut vérifier en considérant le premier et le dernier terme de la somme avant et aprés changement
d’indice.

3
AtTENTION! On ne peut pas effectuer n’importe quel changement d’indice. Par exemple, soit S = Z a; k- On pourrait

6 k=0
naivement effectuer le chanegement d’indice | = 2k de sorte que S = Z a;. Mais
1=0
3 6
Zazyk=a0+az+a4+a6 tandisque Zal=a0+a1+a2+a3+a4+a5+a6
=0 l=0

Le probléme vient du fait que 2k ne prend pas toutes les valeurs entiéres entre 0 et 6 mais seulement les valeurs paires.

Exercice 1.4

Compléter les trous dans les égalités suivantes :

n+2

n—1 .
Euk+2—2“k’ Zuk:Zun Zuku—zu

k=-. k=4 k=1 k=-

Exercice 1.5

Calculer la somme

> (i wimn)

On peut énoncer cette technique de changement d’indice de maniére plus rigoureuse.
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Proposition 1.1

Soit I un ensemble fini, (a;);c; € K! et ¢ une bijection de I sur un ensemble J. Alors

Z Qo) = Z 4

iel jer
REMARQUE. On a effectué le changement d’indice j = ¢(i).

1.5 Sommation par paquets

On a d’abord tout simplement :

Zak—Zak+ Z a, si m<p<n

k=p+1

Exercice 1.6

2n 2n
Calculer Z min(k, n) et Z max(k, n).
k=0 k=0

— Séparation des termes d’indices pairs et impairs

1l existe plusieurs facons d’écrire la somme des termes d’indices pairs et et la somme des termes d’indices impairs.

Zak—Zak ; Z o

kpalr kir;;ﬁir
= Z a, + Z ag

m<k<n m<k<n

k pair k impair
= Z Ak + Z A2k+1

m<2k<n m<2k+1<n

5] =]
= Z AGr + Qok+1

TR

L J

Exemple 1.1

2(0)-56)- 207 -56) -2
¥oo()- 50502026112

l= l=1

On peut énoncer cette technique de sommation par paquet de maniére plus rigoureuse.
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Proposition 1.2

n
Soit (a;);er € KL Si T = |_| B;, alors
Jj=1

2 Sommes classiques
2.1 Factorisation de a" — b"
Proposition 2.1
Soient (a, b) € K? et n € N. Alors
a"—b"=(a—-b)a* ' +a" b+ - +ab" 2+ b))

n—1 n—1
=(a—-b) Z akb"1-k = (a — b) 2 ah—1-kpk
k=0 k=0

REMARQUE. On a en particulier

n—1

a"-1=(@-D)@ 1 +a" 2+ +a+1)=(a—-1) ) da
k=0

2.2 Séries arithmétiques et géométriques

Proposition 2.2 Séries arithmétiques

Soient (a,,) une suite arithmétique et (n, p) € N? tels que n < p.

P a,+a
Zakanz 2
k=n

ou N = p—n + 1 est le nombre de termes de la somme.
En frangais, la somme de termes consécutifs d’une suite arithmétique est €gal au produit de la moyenne des termes
extrémes par le nombre de termes.

Exemple 2.1

nn+1)

n
On retrouve en particulier que Z k= >

k=1
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Proposition 2.3 Séries géométriques

Soient (a,,) une suite géométrique de raison q et (n, p) € N? tels que n < p.

1_N

D q .
_— 1
Z a = Qap 1-q siq#
k=n Na, =Na, sig=1
ou N = p—n + 1 est le nombre de termes de la somme.
n 1-— qn+l )
1
REMARQUE. On retiendra en particulier que Z =1 1- siq # .
k=0 n+1 sig=1

Exercice 2.1

n
Calculer Z k2k.
k=1

2.3 Sommes binomiales

2.3.1 Coefficients binomiaux

Définition 2.1 Factorielle

n
Pour n € N*, on note n! le produit des entiers de 1 a ni.e. n! = H k. On convient que 0! = 1.
k=1

Définition 2.2 Coefficient binomial

Soitn € Netk € [0,n].

n\ nn-1)..(n—k+1) n!
k]~ k! T (n—k)k!

REMARQUE. Lorsque I’on interprétera les coefficients binomiaux de manieére combinatoire, on verra que 1’on peut convenir

n
que (k) = 0 pour k > n.
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Proposition 2.4 Propriétés des coefficients binomiaux

Symétrie des coefficients binomiaux Soit (n,k) € N? tel que k < n.

-2
(-1

Formule de Pascal Soit (n,k) € (N*)2 tel que k < n.

Relation utile Soit (n,k) € (N*)2 tel que k < n.

n
REMARQUE. Ces relations sont encore vraies sans condition sur k et n si I’on convient que (k) = 0 pour k > n.

— Triangle de Pascal

N

La relation de Pascal permet de construire le triangle de Pascal donnant les coefficients binomiaux de proche en proche.

On obtient une case en additionnant la case au-dessus et la case au-dessus a gauche : par exemple, 10 = 6+4ou3 = 2+1.

J
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— Dénombrement de chemins

Les coeflicients binomiaux peuvent également s’interpréter en termes de dénombrement de chemins dans un arbre binaire.
n
En effet, le coefficient binomial K correspond aux nombres de chemins d’un arbre binaire de «profondeur» n dans

lesquels on a choisi k fois la branche de gauche et donc n — k fois la branche de droite.

2.3.2 Binome de Newton

Proposition 2.5 Formule du binéme

Soient (a, b) € K? et n € N. Alors

(a+b)" =) (Z)akb”‘k

k=0

Exemple 2.2

Ona kZ:()(Z) =(1+1)"=2"et kZZ;) (Z)(_l)k —(1-1)y=o0.

Exercice 2.2 %

n n 2n on
Calculer les sommes S; = Z (k) 2kets, = Z ( K )(—1)"2"_1

k=0 k=1

http://lgarcin.github.io 8


http://lgarcin.github.io

© Laurent Garcin MP Dumont d’Urville

3 Sommes doubles

3.1 Définition et notations

I n
On appelle somme double toute somme du type Z Z a; ;. Par définition,
i=k j=m
l l n
ai’j = Z Si ou Si = Z ai’j.
i=k j=m i=k j=m

On peut aussi noter cette méme somme

Z a,-’j ou encore Z Cli,j
k<i<l @Delkx[m,n]
m<j<n
Si les bornes des dans les sommes sont identiques on a une notation plus condensée. Par exemple,
n
22,0 = 2,
i=1j=1 1<i,j<n
Attention, les bornes de la deuxieme somme peuvent dépendre de I’indice de la premieére somme. Par exemple,

1

n i
ai,j

i=2j=1

Mais I’inverse n’arrive JAMALIS ou alors on a fait une erreur.
On peut aussi avoir des notations plus condensées dans ce cas. Par exemple,

n n n
D Dlay;= D, a; ouencore Y daj;= Y ay;

i=1j=1 1<j<i<n i=1j=i 1<i<j<n

3.2 Regles de calcul

Ce sont les mémes que pour une somme simple. Remarquons que 1’on peut mettre en facteur dans la deuxieme somme
toute expression qui ne dépend pas du deuxieme indice. C’est-a-dire,

22 b =2 (ai % bu’)
i€l jeJ iel jel
Cette derniére remarque nous permet de factoriser une double somme lorsqu’on peut séparer les indices :

> a3 (Ban)- 3 (Sen) - (Sa)(2s)

(i,j)eIx] iel \jel jeJ \iel

Exercice 3.1

n n
Calculer Z Z 22—,

i=0 j=0

3.3 Interversion des signes Z

Si les bornes ne dépendent pas des indices, on peut intervertir les signes Z sans se poser de questions.

1 n n 1
Z Z aij = Z kai,j

i=k j=m j=mi=

Sinon, les choses sont un peu plus délicates et on visualise souvent mieux la situation au moyen d’un tableau.
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\Y (210 Y Interversion au moyen d’un tableau
n i
Interversion du signe Z dans Z Z a; ;-
i=0 j=0
Dans le tableau ci-contre, on peut faire la somme des élé-
ments
n i ]
* ligne par ligne : Z Z Qi j i 0 1 2 3 4
i=0 j=0 0 oo
non 1 a0 %11
* colonne par colonne : Z Z aj 2 Qo QA1 oy
Jj=0 j=i 3 Ao Q31 Az Q33
Ces deux doubles sommes sont donc égales. Rien d’éton- 4 | aso Qa1 Qi Q43 Gag
nant a cela puisqu’on peut réécrire ces deux sommes comme
aLr

0<j<i<n
Exercice 3.2
Ecrire de deux maniéres différentes Z a; j-

1<i<j<n
Exercice 3.3
n n k
Vérifier que Z k2k = Z Z 2K et donner une expression simple de cette somme en intervertissant 1’ordre de sommation.
k=1 k=11=1
3.4 Sommation par paquets
3.4.1 Premier exemple
Soit par exemple a calculer la somme double S = Z max(i, j). On peut séparer séparer cette somme en trois «paquets» :

1<i,j<n
ceux pour lesquels i < j, ceux pour lesquels i > j et ceux pour lesquels i = j. Ainsi

n

S= > max(i,j)+ Y max(i,j)+ ), max(i,i)
1<i<j<n 1<j<i<n i=1
n
= D+ Y i+
1<i<j<n 1<j<i<sn i=1

Les deux premieres sommes sont les mémes (on a juste permuté i et j) et

n j-1 n
J=2200= 20 =Dj= () = 1) = (S1(n) = 1) = Sy(n) = $,(n)
Jj=2i=1 Jj=2

1<i<j<n

Par conséquent,
nn+1)4n—-1)

S = 2(Sy(n) — S1(n)) + S1(n) = 28,(n) — S1(n) = 6

3.4.2 Deuxieme exemple

Soit maintenant a calculer la somme double Z |i — j|. Remarquons que |i — j| peut prendre des valeursde 0 an — 1
1<i,j<n

3 |i—j|=ni1 ) k=n§ 2k

1<i,j<n k=0 |i—j|=k k=1 i—j|=k

donc
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Reste a trouver le nombre de couples (i, j) tels que |i — j| = k pour k € [1,n — 1] (le cas k = 0 ne change pas la somme).

0 1 2 3 4
1 0 1 2 3
1 0 1 2

On construit le tableau des |i — j| pour n = 5. On voit qu’on retrouve n fois
la valeur O (mais elle ne nous intéresse pas) et 2(n — k) fois la valeur k pour
ke[l,n-1].

On en déduit donc que

n—1
S ji—jl= Y 2n—kk = 2n8,(n— 1) — 28,(n — 1) = w
1<i,j<n k=1

4 Produits
4.1 Le symboleH

Notation 4.1

Soit I un ensemble fini et (a;);c; € K. On note H a; le produit des éléments de la famille (a;);e; € K.
iel

REMARQUE. L’associativité et la commutativité de la loi X sur K permet de définir correctement cette somme. Elle ne dépend
pas de I’ordre dans lequel on somme les termes.

REMARQUE. Sil = @, on convient que H a; = 1 (élément neutre pour la loi X).
iel

a N
Notation 4.2

Soient m et n deux entiers naturels. Alors

n .
H Andpmeq .- Ap_1a, sim<n,
i = .
1 sinon.

k=m

On peut aussi noter H aj ou encore H ay. Ce produit comporte n — m + 1 facteurs.
m<k<n ke[m,n]

ATTENTION! Les éléments intervenant dans un produit sont appelés des facteurs et non des termes. On parle de termes
lorsqu’on manipule des sommes.

Exercice 4.1

n
Calculer 2.
k=0

Il n’est peut-&tre pas inutile de rappeler qu’un produit est nul si et seulement si un de ses facteurs est nul.

Exercice 4.2

1000

Calculer ] kIn(1 + [k|).
k=-1000
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4.2 Regles de calcul

et par récurrence

et si les a; sont tous non nuls

n
Haﬁ = (H ak> pourn € Z

k
Enfin, en utilisant les propriétés de I’exponentiation, si les a; sont tous strictement positifs

A
Haﬁ = (H ak> pour A € R
k k

ATTENTION ! On ne peut JAMAIS mettre en facteur une expression dans un produit méme si elle ne dépend pas de I’indice
de sommation. Autrement dit, en général,
TTie #2 T
k k

Cependant, on peut écrire
n n
[T 7@ =2"]] a
k=1 k=1

puisque le facteur A apparait n fois dans le produit.

4.3 Produit télescopique

On a le méme type de remarque que pour les sommes

n

H Uk+1 _ Pn41

k=m Yk Um

en supposant tous les vy non nuls.

Exercice 4.3

45 79
2k +1

Calculer | | — et | | .
k:5k+1 k=29 2k_1

4.4 Passage au logarithme

On peut facilement se ramener & une somme en remarquant que

n n
IH(H ak)z Z lnak
k=m k=m

si tous les a;, sont strictement positifs.

Exercice 4.4

n 1
Calculer H 2k(e+1) |
k=1
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