© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★ Théorème de Lamé

L'objectif de cet exercice est d'obtenir une majoration du nombre de divisions euclidiennes effectuées lors du calcul d'un PGCD par l'algorithme d'Euclide.

- 1. On considère la suite (F_n) telle que $F_0 = 0$, $F_1 = 1$ et $F_{n+2} = F_n + F_{n+1}$ pour tout $n \in \mathbb{N}$. On note par ailleurs φ l'unique racine strictement positive du trinôme $X^2 X 1$.
 - a. Calculer φ.
 - **b.** Montrer que $F_{n+2} > \varphi^n$ pour tout $n \in \mathbb{N}^*$.
- **2.** Soit $(a, b, q, r) \in \mathbb{Z}^4$ tel que a = bq + r. Montrer que $a \wedge b = b \wedge r$.
- 3. Soit $(a, b) \in \mathbb{N}^2$ tel que 0 < b < a. On rappelle le principe de l'algorithme d'Euclide appliqué au couple (a, b): il consiste à construire une suite finie $(r_k)_{0 \le k \le N+1}$ telle que
 - $r_0 = a$ et $r_1 = b$;
 - pour tout $k \in [0, N-1]$, r_{k+2} est le reste de la division euclidienne de r_k par r_{k+1} ;
 - $0 = r_{N+1} < r_N < \cdots < r_1 < r_0$.

L'entier N est donc le nombre de divisions euclidiennes effectuées dans l'algorithme d'Euclide appliqué au couple (a, b).

- **a.** Dans cette question uniquement, on suppose a = 154 et b = 48. Déterminer N.
- **b.** Justifier que $a \wedge b = r_N$.
- **c.** Montrer que $r_k \ge r_{k+1} + r_{k+2}$ pour tout $k \in [0, N-1]$.
- **d.** Montrer par récurrence que $r_k \ge F_{N+2-k}$ pour tout $k \in [0, N]$.
- **e.** Dans cette question uniquement, on suppose $N \ge 2$. Montrer que $N < \frac{\ln b}{\ln \phi} + 1$.
- **f.** Soit $k \in \mathbb{N}^*$. On suppose que b s'écrit avec au plus k chiffres en base 10. Montrer que $N \le 5k$. On donne $\frac{\ln 10}{\ln \varphi} \approx 4,78$.
- **4. a.** Écrire une fonction Python d'arguments deux entiers naturels *a* et *b* renvoyant le PGCD de *a* et *b* calculé à l'aide de l'algorithme d'Euclide décrit dans la question précédente.
 - **b.** Modifier légèrement la fonction de la question précédente afin qu'elle renvoie le nombre de divisions euclidiennes effectués dans l'algorithme d'Euclide.

Exercice 2 ★★

D'après E3A 2000 PC

Dans tout l'exercice, n désigne un entier naturel non nul fixé.

1. a. En développant $[(1-X)+X]^{2n-1}$, déterminer deux polynômes F_n et G_n de $\mathbb{R}_{n-1}[X]$ tels que

$$(1 - X)^n F_n + X^n G_n = 1$$

On ne cherchera pas pour l'instant à calculer les coefficients de F_n et G_n .

- **b.** Montrer que (F_n, G_n) est l'unique couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant l'égalité de la question précédente.
- **2. a.** Montrer que $F_n(1 X) = G_n(X)$.
 - **b.** Calculer $F_n(0)$, $F_n\left(\frac{1}{2}\right)$ et $F_n(1)$. Pour la suite de l'exercice, on pourra librement admettre que $F_n(1) \neq 0$.

3. **a.** Montrer que $F_n(x) = (1-x)^{-n} + o(x^{n-1})$.

- **b.** En déduire que $F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k$.
- **4. a.** Montrer que $nF_n (1 X)F'_n = n \binom{2n-1}{n} X^{n-1}$.
 - **b.** Montrer qu'il existe un unique polynôme $H_n \in \mathbb{R}[X]$ tel que $H_n' = X^{n-1}(1-X)^{n-1}$ et $H_n(0) = 0$.
 - c. Montrer que

$$(1 - X)^n \mathcal{F}_n = 1 - n \binom{2n - 1}{n} \mathcal{H}_n$$

- **d.** Déterminer $H_n(1)$.
- **5.** a. Donner le tableau de variations de H_n sur \mathbb{R} suivant la parité de n.
 - **b.** En déduire le nombre de racines réelles de F_n suivant la parité de n.